H值周期相关过程中经验自协方差算子的收敛速度

IF 0.1 Q4 STATISTICS & PROBABILITY
M. Hashemi, A. Zamani
{"title":"H值周期相关过程中经验自协方差算子的收敛速度","authors":"M. Hashemi, A. Zamani","doi":"10.52547/JIRSS.19.2.1","DOIUrl":null,"url":null,"abstract":". This paper focuses on the empirical autocovariance operator of H -valued periodically correlated processes. It will be demonstrated that the empirical estimator converges to a limit with the same periodicity as the main process. Moreover, the rate of convergence of the empirical autocovariance operator in Hilbert-Schmidt norm is derived.","PeriodicalId":42965,"journal":{"name":"JIRSS-Journal of the Iranian Statistical Society","volume":" ","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence Rate of Empirical Autocovariance Operators in H-Valued Periodically Correlated Processes\",\"authors\":\"M. Hashemi, A. Zamani\",\"doi\":\"10.52547/JIRSS.19.2.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper focuses on the empirical autocovariance operator of H -valued periodically correlated processes. It will be demonstrated that the empirical estimator converges to a limit with the same periodicity as the main process. Moreover, the rate of convergence of the empirical autocovariance operator in Hilbert-Schmidt norm is derived.\",\"PeriodicalId\":42965,\"journal\":{\"name\":\"JIRSS-Journal of the Iranian Statistical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JIRSS-Journal of the Iranian Statistical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52547/JIRSS.19.2.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JIRSS-Journal of the Iranian Statistical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/JIRSS.19.2.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

. 研究了H值周期相关过程的经验自协方差算子。将证明经验估计收敛于与主过程具有相同周期性的极限。此外,还推导了经验自协方差算子在Hilbert-Schmidt范数中的收敛速度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence Rate of Empirical Autocovariance Operators in H-Valued Periodically Correlated Processes
. This paper focuses on the empirical autocovariance operator of H -valued periodically correlated processes. It will be demonstrated that the empirical estimator converges to a limit with the same periodicity as the main process. Moreover, the rate of convergence of the empirical autocovariance operator in Hilbert-Schmidt norm is derived.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信