Abdulrahman Albeladi, Akhlaq Moman, Timothy F. L. McKenna
{"title":"工艺毒物对邻苯二甲酸酯后负载Ziegler - Natta催化剂气相丙烯聚合性能的影响","authors":"Abdulrahman Albeladi, Akhlaq Moman, Timothy F. L. McKenna","doi":"10.1002/mren.202200049","DOIUrl":null,"url":null,"abstract":"<p>The impact of common process catalyst poisons on the performance of a 6th generation Ziegler–Natta catalysts during the gas phase polymerization of propylene are examined using two approaches: introducing propylene without purification, or with one or two sets of purification columns, and by introducing carbon dioxide (CO<sub>2</sub>), oxygen (O<sub>2</sub>), water (H<sub>2</sub>O), methanol (CH<sub>3</sub>OH), ethyl acetate (C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>) and dimethyl sulfoxide (C<sub>2</sub>H<sub>6</sub>SO) during the polymerization. As expected, purification columns increases the catalyst activity significantly, slightly reduce catalyst decay. Injecting TiBA during the reaction leads to an activity increase. The addition of two full sets of columns substantially increased the repeatability of polymerization reactions. The power of deactivation of poisons injected during the polymerization reaction is: O<sub>2</sub> > CO<sub>2</sub> > CH<sub>3</sub>OH > C<sub>2</sub>H<sub>6</sub>SO > C<sub>4</sub>H<sub>8</sub>O<sub>2</sub> > H<sub>2</sub>O. Adding CO<sub>2</sub>, O<sub>2</sub>, and CH<sub>3</sub>OH resulted in a progressive decrease in molecular weight while almost no effect is observed with H<sub>2</sub>O. However, C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>, and C<sub>2</sub>H<sub>6</sub>SO resulted in a mild increase in molecular weight. Additionally, the effects on crystallinity and stereoregularity are similar where CO<sub>2</sub>, O<sub>2</sub>, H<sub>2</sub>O and CH<sub>3</sub>OH caused a progressive decrease while C<sub>4</sub>H<sub>8</sub>O<sub>2</sub> and C<sub>2</sub>H<sub>6</sub>SO resulted in a mild increase, indicating some isotacticity control by these two poisons.</p>","PeriodicalId":18052,"journal":{"name":"Macromolecular Reaction Engineering","volume":"17 4","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2022-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of Process Poisons on the Performance of Post-Phthalate Supported Ziegler–Natta Catalysts in Gas Phase Propylene Polymerization\",\"authors\":\"Abdulrahman Albeladi, Akhlaq Moman, Timothy F. L. McKenna\",\"doi\":\"10.1002/mren.202200049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The impact of common process catalyst poisons on the performance of a 6th generation Ziegler–Natta catalysts during the gas phase polymerization of propylene are examined using two approaches: introducing propylene without purification, or with one or two sets of purification columns, and by introducing carbon dioxide (CO<sub>2</sub>), oxygen (O<sub>2</sub>), water (H<sub>2</sub>O), methanol (CH<sub>3</sub>OH), ethyl acetate (C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>) and dimethyl sulfoxide (C<sub>2</sub>H<sub>6</sub>SO) during the polymerization. As expected, purification columns increases the catalyst activity significantly, slightly reduce catalyst decay. Injecting TiBA during the reaction leads to an activity increase. The addition of two full sets of columns substantially increased the repeatability of polymerization reactions. The power of deactivation of poisons injected during the polymerization reaction is: O<sub>2</sub> > CO<sub>2</sub> > CH<sub>3</sub>OH > C<sub>2</sub>H<sub>6</sub>SO > C<sub>4</sub>H<sub>8</sub>O<sub>2</sub> > H<sub>2</sub>O. Adding CO<sub>2</sub>, O<sub>2</sub>, and CH<sub>3</sub>OH resulted in a progressive decrease in molecular weight while almost no effect is observed with H<sub>2</sub>O. However, C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>, and C<sub>2</sub>H<sub>6</sub>SO resulted in a mild increase in molecular weight. Additionally, the effects on crystallinity and stereoregularity are similar where CO<sub>2</sub>, O<sub>2</sub>, H<sub>2</sub>O and CH<sub>3</sub>OH caused a progressive decrease while C<sub>4</sub>H<sub>8</sub>O<sub>2</sub> and C<sub>2</sub>H<sub>6</sub>SO resulted in a mild increase, indicating some isotacticity control by these two poisons.</p>\",\"PeriodicalId\":18052,\"journal\":{\"name\":\"Macromolecular Reaction Engineering\",\"volume\":\"17 4\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Reaction Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mren.202200049\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Reaction Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mren.202200049","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Impact of Process Poisons on the Performance of Post-Phthalate Supported Ziegler–Natta Catalysts in Gas Phase Propylene Polymerization
The impact of common process catalyst poisons on the performance of a 6th generation Ziegler–Natta catalysts during the gas phase polymerization of propylene are examined using two approaches: introducing propylene without purification, or with one or two sets of purification columns, and by introducing carbon dioxide (CO2), oxygen (O2), water (H2O), methanol (CH3OH), ethyl acetate (C4H8O2) and dimethyl sulfoxide (C2H6SO) during the polymerization. As expected, purification columns increases the catalyst activity significantly, slightly reduce catalyst decay. Injecting TiBA during the reaction leads to an activity increase. The addition of two full sets of columns substantially increased the repeatability of polymerization reactions. The power of deactivation of poisons injected during the polymerization reaction is: O2 > CO2 > CH3OH > C2H6SO > C4H8O2 > H2O. Adding CO2, O2, and CH3OH resulted in a progressive decrease in molecular weight while almost no effect is observed with H2O. However, C4H8O2, and C2H6SO resulted in a mild increase in molecular weight. Additionally, the effects on crystallinity and stereoregularity are similar where CO2, O2, H2O and CH3OH caused a progressive decrease while C4H8O2 and C2H6SO resulted in a mild increase, indicating some isotacticity control by these two poisons.
期刊介绍:
Macromolecular Reaction Engineering is the established high-quality journal dedicated exclusively to academic and industrial research in the field of polymer reaction engineering.