{"title":"Iwasawa模的环原子猜想和半简单性","authors":"J. Jaulent","doi":"10.4064/aa221123-27-4","DOIUrl":null,"url":null,"abstract":"We show that the cyclotomic conjecture on the characteristic polynomial of T-ramified S-split Iwasawa modules introduced in a previous paper and satisfied by abelian fields governs the Z${\\ell}$-rank of the submodule of fixed points for all finite disjoint sets S and T of places.Last, in the CM-case we prove that the weak and the strong versions of the cyclotomic conjecture both are equivalent to the conjunction of the classical conjectures of Leopoldt and Gross-Kuz'min.","PeriodicalId":37888,"journal":{"name":"Acta Arithmetica","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conjecture cyclotomique et semi-simplicité des modules d’Iwasawa\",\"authors\":\"J. Jaulent\",\"doi\":\"10.4064/aa221123-27-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the cyclotomic conjecture on the characteristic polynomial of T-ramified S-split Iwasawa modules introduced in a previous paper and satisfied by abelian fields governs the Z${\\\\ell}$-rank of the submodule of fixed points for all finite disjoint sets S and T of places.Last, in the CM-case we prove that the weak and the strong versions of the cyclotomic conjecture both are equivalent to the conjunction of the classical conjectures of Leopoldt and Gross-Kuz'min.\",\"PeriodicalId\":37888,\"journal\":{\"name\":\"Acta Arithmetica\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Arithmetica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/aa221123-27-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Arithmetica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/aa221123-27-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Conjecture cyclotomique et semi-simplicité des modules d’Iwasawa
We show that the cyclotomic conjecture on the characteristic polynomial of T-ramified S-split Iwasawa modules introduced in a previous paper and satisfied by abelian fields governs the Z${\ell}$-rank of the submodule of fixed points for all finite disjoint sets S and T of places.Last, in the CM-case we prove that the weak and the strong versions of the cyclotomic conjecture both are equivalent to the conjunction of the classical conjectures of Leopoldt and Gross-Kuz'min.