齐次椭圆算子基本解的球谐展开及其导数

IF 1 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
V. Gulizzi, I. Benedetti, A. Milazzo
{"title":"齐次椭圆算子基本解的球谐展开及其导数","authors":"V. Gulizzi, I. Benedetti, A. Milazzo","doi":"10.1142/S1756973717400066","DOIUrl":null,"url":null,"abstract":"In this work, a unified scheme for computing the fundamental solutions of a three-dimensional homogeneous elliptic partial differential operator is presented. The scheme is based on the Rayleigh expansion and on the Fourier representation of a homogeneous function. The scheme has the advantage of expressing the fundamental solutions and their derivatives up to the desired order without any term-by-term differentiation. Moreover, the coefficients of the series need to be computed only once, thus making the presented scheme attractive for numerical implementation. The scheme is employed to compute the fundamental solution of isotropic elasticity showing that the spherical harmonics expansions provide the exact expressions. Then, the accuracy of the scheme is assessed by computing the fundamental solutions of a generally anisotropic magneto-electro-elastic material.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":"08 1","pages":"1740006"},"PeriodicalIF":1.0000,"publicationDate":"2017-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1756973717400066","citationCount":"1","resultStr":"{\"title\":\"Spherical Harmonics Expansion of Fundamental Solutions and Their Derivatives for Homogeneous Elliptic Operators\",\"authors\":\"V. Gulizzi, I. Benedetti, A. Milazzo\",\"doi\":\"10.1142/S1756973717400066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, a unified scheme for computing the fundamental solutions of a three-dimensional homogeneous elliptic partial differential operator is presented. The scheme is based on the Rayleigh expansion and on the Fourier representation of a homogeneous function. The scheme has the advantage of expressing the fundamental solutions and their derivatives up to the desired order without any term-by-term differentiation. Moreover, the coefficients of the series need to be computed only once, thus making the presented scheme attractive for numerical implementation. The scheme is employed to compute the fundamental solution of isotropic elasticity showing that the spherical harmonics expansions provide the exact expressions. Then, the accuracy of the scheme is assessed by computing the fundamental solutions of a generally anisotropic magneto-electro-elastic material.\",\"PeriodicalId\":43242,\"journal\":{\"name\":\"Journal of Multiscale Modelling\",\"volume\":\"08 1\",\"pages\":\"1740006\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2017-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S1756973717400066\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multiscale Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1756973717400066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multiscale Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1756973717400066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1

摘要

在这项工作中,提出了一个计算三维齐次椭圆偏微分算子基本解的统一方案。该方案基于瑞利展开和齐次函数的傅立叶表示。该方案的优点是将基本解及其导数表达到所需的阶数,而不需要任何逐项微分。此外,级数的系数只需要计算一次,因此所提出的方案对数值实现具有吸引力。该格式用于计算各向同性弹性的基本解,表明球面谐波展开提供了精确的表达式。然后,通过计算一般各向异性磁电弹性材料的基本解来评估该方案的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spherical Harmonics Expansion of Fundamental Solutions and Their Derivatives for Homogeneous Elliptic Operators
In this work, a unified scheme for computing the fundamental solutions of a three-dimensional homogeneous elliptic partial differential operator is presented. The scheme is based on the Rayleigh expansion and on the Fourier representation of a homogeneous function. The scheme has the advantage of expressing the fundamental solutions and their derivatives up to the desired order without any term-by-term differentiation. Moreover, the coefficients of the series need to be computed only once, thus making the presented scheme attractive for numerical implementation. The scheme is employed to compute the fundamental solution of isotropic elasticity showing that the spherical harmonics expansions provide the exact expressions. Then, the accuracy of the scheme is assessed by computing the fundamental solutions of a generally anisotropic magneto-electro-elastic material.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Multiscale Modelling
Journal of Multiscale Modelling MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
CiteScore
2.70
自引率
0.00%
发文量
9
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信