Francisco Odair de Paiva, O. Miyagaki, Adilson E. Presoto
{"title":"布雷齐斯-尼伦堡问题解的存在性","authors":"Francisco Odair de Paiva, O. Miyagaki, Adilson E. Presoto","doi":"10.12775/tmna.2022.029","DOIUrl":null,"url":null,"abstract":"We are concerned with of existence of solutions to the semilinear elliptic problem\n$$\n \\begin{cases}\n - \\Delta u=\\lambda_{k}u+u^3 &\\text{in } \\Omega, \\\\\n u= 0 &\\text{on }\\partial \\Omega,\n \\end{cases}\n$$%\nin a bounded domain $\\Omega \\subset \\mathbb{R}^{4}$. Here $\\lambda_k$\nis an eigenvalue of the $-\\Delta$ in $H_0^1(\\Omega)$. We prove that this problem has a nontrivial solution.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of solutions for the Brezis-Nirenberg problem\",\"authors\":\"Francisco Odair de Paiva, O. Miyagaki, Adilson E. Presoto\",\"doi\":\"10.12775/tmna.2022.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We are concerned with of existence of solutions to the semilinear elliptic problem\\n$$\\n \\\\begin{cases}\\n - \\\\Delta u=\\\\lambda_{k}u+u^3 &\\\\text{in } \\\\Omega, \\\\\\\\\\n u= 0 &\\\\text{on }\\\\partial \\\\Omega,\\n \\\\end{cases}\\n$$%\\nin a bounded domain $\\\\Omega \\\\subset \\\\mathbb{R}^{4}$. Here $\\\\lambda_k$\\nis an eigenvalue of the $-\\\\Delta$ in $H_0^1(\\\\Omega)$. We prove that this problem has a nontrivial solution.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.12775/tmna.2022.029\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Existence of solutions for the Brezis-Nirenberg problem
We are concerned with of existence of solutions to the semilinear elliptic problem
$$
\begin{cases}
- \Delta u=\lambda_{k}u+u^3 &\text{in } \Omega, \\
u= 0 &\text{on }\partial \Omega,
\end{cases}
$$%
in a bounded domain $\Omega \subset \mathbb{R}^{4}$. Here $\lambda_k$
is an eigenvalue of the $-\Delta$ in $H_0^1(\Omega)$. We prove that this problem has a nontrivial solution.