具有数值平凡正则束的拟极化流形伴随束整体截面维数的正性

Pub Date : 2021-04-13 DOI:10.2969/JMSJ/84588458
Y. Fukuma
{"title":"具有数值平凡正则束的拟极化流形伴随束整体截面维数的正性","authors":"Y. Fukuma","doi":"10.2969/JMSJ/84588458","DOIUrl":null,"url":null,"abstract":"Let (X, L) denote a quasi-polarized manifold of dimension n ≥ 5 defined over the field of complex numbers such that the canonical line bundle KX of X is numerically equivalent to zero. In this paper, we consider the dimension of the global sections of KX + mL in this case, and we prove that h(KX + mL) > 0 for every positive integer m with m ≥ n − 3. In particular, a Beltrametti-Sommese conjecture is true for quasi-polarized manifolds with numerically trivial canonical divisors.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the positivity of the dimension of the global sections of\\n adjoint bundle for quasi-polarized manifold with numerically trivial canonical bundle\",\"authors\":\"Y. Fukuma\",\"doi\":\"10.2969/JMSJ/84588458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let (X, L) denote a quasi-polarized manifold of dimension n ≥ 5 defined over the field of complex numbers such that the canonical line bundle KX of X is numerically equivalent to zero. In this paper, we consider the dimension of the global sections of KX + mL in this case, and we prove that h(KX + mL) > 0 for every positive integer m with m ≥ n − 3. In particular, a Beltrametti-Sommese conjecture is true for quasi-polarized manifolds with numerically trivial canonical divisors.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/JMSJ/84588458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/JMSJ/84588458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设(X, L)表示一个维数n≥5的拟极化流形,定义在复数域上,使得X的正则线束KX在数值上等于零。在这种情况下,我们考虑了KX + mL的全局截面的维数,并证明了h(KX + mL) >对于m≥n−3的每一个正整数m都成立。特别地,对于具有数值平凡正则因子的拟极化流形,一个Beltrametti-Sommese猜想是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On the positivity of the dimension of the global sections of adjoint bundle for quasi-polarized manifold with numerically trivial canonical bundle
Let (X, L) denote a quasi-polarized manifold of dimension n ≥ 5 defined over the field of complex numbers such that the canonical line bundle KX of X is numerically equivalent to zero. In this paper, we consider the dimension of the global sections of KX + mL in this case, and we prove that h(KX + mL) > 0 for every positive integer m with m ≥ n − 3. In particular, a Beltrametti-Sommese conjecture is true for quasi-polarized manifolds with numerically trivial canonical divisors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信