{"title":"具有数值平凡正则束的拟极化流形伴随束整体截面维数的正性","authors":"Y. Fukuma","doi":"10.2969/JMSJ/84588458","DOIUrl":null,"url":null,"abstract":"Let (X, L) denote a quasi-polarized manifold of dimension n ≥ 5 defined over the field of complex numbers such that the canonical line bundle KX of X is numerically equivalent to zero. In this paper, we consider the dimension of the global sections of KX + mL in this case, and we prove that h(KX + mL) > 0 for every positive integer m with m ≥ n − 3. In particular, a Beltrametti-Sommese conjecture is true for quasi-polarized manifolds with numerically trivial canonical divisors.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the positivity of the dimension of the global sections of\\n adjoint bundle for quasi-polarized manifold with numerically trivial canonical bundle\",\"authors\":\"Y. Fukuma\",\"doi\":\"10.2969/JMSJ/84588458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let (X, L) denote a quasi-polarized manifold of dimension n ≥ 5 defined over the field of complex numbers such that the canonical line bundle KX of X is numerically equivalent to zero. In this paper, we consider the dimension of the global sections of KX + mL in this case, and we prove that h(KX + mL) > 0 for every positive integer m with m ≥ n − 3. In particular, a Beltrametti-Sommese conjecture is true for quasi-polarized manifolds with numerically trivial canonical divisors.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2969/JMSJ/84588458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2969/JMSJ/84588458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the positivity of the dimension of the global sections of
adjoint bundle for quasi-polarized manifold with numerically trivial canonical bundle
Let (X, L) denote a quasi-polarized manifold of dimension n ≥ 5 defined over the field of complex numbers such that the canonical line bundle KX of X is numerically equivalent to zero. In this paper, we consider the dimension of the global sections of KX + mL in this case, and we prove that h(KX + mL) > 0 for every positive integer m with m ≥ n − 3. In particular, a Beltrametti-Sommese conjecture is true for quasi-polarized manifolds with numerically trivial canonical divisors.