{"title":"应力三轴性和载荷角在固体力学和损伤力学中的出现","authors":"Mohammed Algarni, Sami Ghazali, Mohammed Zwawi","doi":"10.3103/S0025654421050058","DOIUrl":null,"url":null,"abstract":"<p>The review paper covers an overview of the early and current research related to models for both solid and damage mechanics. It addresses the most well-known phenomenological metal plasticity and ductile fracture models in these fields for monotonic loading conditions. The paper commences with a comprehensive literature review outlining the history and current state of the art of the plasticity and ductile fracture models. Then, the paper explains the principal stresses, showing how they represent a metal yield surface. Because most yield functions involve the stress invariant, an extended explanation of stress invariants’ space is extensively described. Moreover, a list of coupled and non-coupled plasticity models and ductile fracture criteria are thoroughly explained chronologically to show the emerging of stress triaxiality and Lode angle in models for solid and damage mechanics. The models presented in this paper assume the material’s isotropy, homogeneity, and elastic-plastic behavior. Finally, two comparison tables demonstrating the most well-known phenomenal plasticity and fracture models for continuum mechanics are chronologically listed.</p>","PeriodicalId":697,"journal":{"name":"Mechanics of Solids","volume":"56 5","pages":"787 - 806"},"PeriodicalIF":0.9000,"publicationDate":"2021-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Emerging of Stress Triaxiality and Lode Angle in Both Solid and Damage Mechanics: A Review\",\"authors\":\"Mohammed Algarni, Sami Ghazali, Mohammed Zwawi\",\"doi\":\"10.3103/S0025654421050058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The review paper covers an overview of the early and current research related to models for both solid and damage mechanics. It addresses the most well-known phenomenological metal plasticity and ductile fracture models in these fields for monotonic loading conditions. The paper commences with a comprehensive literature review outlining the history and current state of the art of the plasticity and ductile fracture models. Then, the paper explains the principal stresses, showing how they represent a metal yield surface. Because most yield functions involve the stress invariant, an extended explanation of stress invariants’ space is extensively described. Moreover, a list of coupled and non-coupled plasticity models and ductile fracture criteria are thoroughly explained chronologically to show the emerging of stress triaxiality and Lode angle in models for solid and damage mechanics. The models presented in this paper assume the material’s isotropy, homogeneity, and elastic-plastic behavior. Finally, two comparison tables demonstrating the most well-known phenomenal plasticity and fracture models for continuum mechanics are chronologically listed.</p>\",\"PeriodicalId\":697,\"journal\":{\"name\":\"Mechanics of Solids\",\"volume\":\"56 5\",\"pages\":\"787 - 806\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Solids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.3103/S0025654421050058\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Solids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.3103/S0025654421050058","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
The Emerging of Stress Triaxiality and Lode Angle in Both Solid and Damage Mechanics: A Review
The review paper covers an overview of the early and current research related to models for both solid and damage mechanics. It addresses the most well-known phenomenological metal plasticity and ductile fracture models in these fields for monotonic loading conditions. The paper commences with a comprehensive literature review outlining the history and current state of the art of the plasticity and ductile fracture models. Then, the paper explains the principal stresses, showing how they represent a metal yield surface. Because most yield functions involve the stress invariant, an extended explanation of stress invariants’ space is extensively described. Moreover, a list of coupled and non-coupled plasticity models and ductile fracture criteria are thoroughly explained chronologically to show the emerging of stress triaxiality and Lode angle in models for solid and damage mechanics. The models presented in this paper assume the material’s isotropy, homogeneity, and elastic-plastic behavior. Finally, two comparison tables demonstrating the most well-known phenomenal plasticity and fracture models for continuum mechanics are chronologically listed.
期刊介绍:
Mechanics of Solids publishes articles in the general areas of dynamics of particles and rigid bodies and the mechanics of deformable solids. The journal has a goal of being a comprehensive record of up-to-the-minute research results. The journal coverage is vibration of discrete and continuous systems; stability and optimization of mechanical systems; automatic control theory; dynamics of multiple body systems; elasticity, viscoelasticity and plasticity; mechanics of composite materials; theory of structures and structural stability; wave propagation and impact of solids; fracture mechanics; micromechanics of solids; mechanics of granular and geological materials; structure-fluid interaction; mechanical behavior of materials; gyroscopes and navigation systems; and nanomechanics. Most of the articles in the journal are theoretical and analytical. They present a blend of basic mechanics theory with analysis of contemporary technological problems.