{"title":"一类特殊矩阵多项式特征值的CAUCHY型界","authors":"Zahid Bashir Monga, W. M. Shah","doi":"10.15826/umj.2023.1.009","DOIUrl":null,"url":null,"abstract":"Let \\(\\mathbb{C}^{m\\times m}\\) be the set of all \\(m\\times m\\) matrices whose entries are in \\(\\mathbb{C},\\) the set of complex numbers. Then \\(P(z):=\\sum\\limits_{j=0}^nA_jz^j,\\) \\(A_j\\in \\mathbb{C}^{m\\times m},\\) \\(0\\leq j\\leq n\\) is called a matrix polynomial. If \\(A_{n}\\neq 0\\), then \\(P(z)\\) is said to be a matrix polynomial of degree \\(n\\). In this paper we prove some results for the bound estimates of the eigenvalues of some lacunary type of matrix polynomials.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON CAUCHY-TYPE BOUNDS FOR THE EIGENVALUES OF A SPECIAL CLASS OF MATRIX POLYNOMIALS\",\"authors\":\"Zahid Bashir Monga, W. M. Shah\",\"doi\":\"10.15826/umj.2023.1.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\(\\\\mathbb{C}^{m\\\\times m}\\\\) be the set of all \\\\(m\\\\times m\\\\) matrices whose entries are in \\\\(\\\\mathbb{C},\\\\) the set of complex numbers. Then \\\\(P(z):=\\\\sum\\\\limits_{j=0}^nA_jz^j,\\\\) \\\\(A_j\\\\in \\\\mathbb{C}^{m\\\\times m},\\\\) \\\\(0\\\\leq j\\\\leq n\\\\) is called a matrix polynomial. If \\\\(A_{n}\\\\neq 0\\\\), then \\\\(P(z)\\\\) is said to be a matrix polynomial of degree \\\\(n\\\\). In this paper we prove some results for the bound estimates of the eigenvalues of some lacunary type of matrix polynomials.\",\"PeriodicalId\":36805,\"journal\":{\"name\":\"Ural Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ural Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/umj.2023.1.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2023.1.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
设\(\mathbb{C}^{m\times m}\)是所有\(m\timers m\)矩阵的集合,这些矩阵的项在\(\math bb{C},\)复数的集合中。则将\(P(z):=\sum\limits_{j=0}^nA_jz^j,\)\(A_j\in\mathbb{C}^{m\times m},\)\(0\leq j\leq n \)称为矩阵多项式。如果\(A_{n}\neq0\),则称\(P(z)\)是次\(n)的矩阵多项式。本文证明了一些空位型矩阵多项式特征值的界估计的一些结果。
ON CAUCHY-TYPE BOUNDS FOR THE EIGENVALUES OF A SPECIAL CLASS OF MATRIX POLYNOMIALS
Let \(\mathbb{C}^{m\times m}\) be the set of all \(m\times m\) matrices whose entries are in \(\mathbb{C},\) the set of complex numbers. Then \(P(z):=\sum\limits_{j=0}^nA_jz^j,\) \(A_j\in \mathbb{C}^{m\times m},\) \(0\leq j\leq n\) is called a matrix polynomial. If \(A_{n}\neq 0\), then \(P(z)\) is said to be a matrix polynomial of degree \(n\). In this paper we prove some results for the bound estimates of the eigenvalues of some lacunary type of matrix polynomials.