一类特殊矩阵多项式特征值的CAUCHY型界

Q3 Mathematics
Zahid Bashir Monga, W. M. Shah
{"title":"一类特殊矩阵多项式特征值的CAUCHY型界","authors":"Zahid Bashir Monga, W. M. Shah","doi":"10.15826/umj.2023.1.009","DOIUrl":null,"url":null,"abstract":"Let \\(\\mathbb{C}^{m\\times m}\\) be the set of all \\(m\\times m\\) matrices whose  entries are in \\(\\mathbb{C},\\) the set of complex numbers. Then \\(P(z):=\\sum\\limits_{j=0}^nA_jz^j,\\) \\(A_j\\in \\mathbb{C}^{m\\times m},\\) \\(0\\leq j\\leq n\\) is called a matrix polynomial. If \\(A_{n}\\neq 0\\), then \\(P(z)\\) is said to be a matrix polynomial of degree \\(n\\). In this paper we prove some results for the  bound estimates of the eigenvalues of some lacunary type of matrix polynomials.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON CAUCHY-TYPE BOUNDS FOR THE EIGENVALUES OF A SPECIAL CLASS OF MATRIX POLYNOMIALS\",\"authors\":\"Zahid Bashir Monga, W. M. Shah\",\"doi\":\"10.15826/umj.2023.1.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let \\\\(\\\\mathbb{C}^{m\\\\times m}\\\\) be the set of all \\\\(m\\\\times m\\\\) matrices whose  entries are in \\\\(\\\\mathbb{C},\\\\) the set of complex numbers. Then \\\\(P(z):=\\\\sum\\\\limits_{j=0}^nA_jz^j,\\\\) \\\\(A_j\\\\in \\\\mathbb{C}^{m\\\\times m},\\\\) \\\\(0\\\\leq j\\\\leq n\\\\) is called a matrix polynomial. If \\\\(A_{n}\\\\neq 0\\\\), then \\\\(P(z)\\\\) is said to be a matrix polynomial of degree \\\\(n\\\\). In this paper we prove some results for the  bound estimates of the eigenvalues of some lacunary type of matrix polynomials.\",\"PeriodicalId\":36805,\"journal\":{\"name\":\"Ural Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ural Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/umj.2023.1.009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2023.1.009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设\(\mathbb{C}^{m\times m}\)是所有\(m\timers m\)矩阵的集合,这些矩阵的项在\(\math bb{C},\)复数的集合中。则将\(P(z):=\sum\limits_{j=0}^nA_jz^j,\)\(A_j\in\mathbb{C}^{m\times m},\)\(0\leq j\leq n \)称为矩阵多项式。如果\(A_{n}\neq0\),则称\(P(z)\)是次\(n)的矩阵多项式。本文证明了一些空位型矩阵多项式特征值的界估计的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON CAUCHY-TYPE BOUNDS FOR THE EIGENVALUES OF A SPECIAL CLASS OF MATRIX POLYNOMIALS
Let \(\mathbb{C}^{m\times m}\) be the set of all \(m\times m\) matrices whose  entries are in \(\mathbb{C},\) the set of complex numbers. Then \(P(z):=\sum\limits_{j=0}^nA_jz^j,\) \(A_j\in \mathbb{C}^{m\times m},\) \(0\leq j\leq n\) is called a matrix polynomial. If \(A_{n}\neq 0\), then \(P(z)\) is said to be a matrix polynomial of degree \(n\). In this paper we prove some results for the  bound estimates of the eigenvalues of some lacunary type of matrix polynomials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ural Mathematical Journal
Ural Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.30
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信