Ghada Sahbeni, Jean Baptiste Pleynet, Konrad Jarocki
{"title":"1980 - 2022年降水Gini指数时空异常分析","authors":"Ghada Sahbeni, Jean Baptiste Pleynet, Konrad Jarocki","doi":"10.1002/asl.1161","DOIUrl":null,"url":null,"abstract":"<p>As a reaction to the expanding challenges associated with social susceptibility and their interconnection to diverse environmental threats, parametric insurance plays a key role as an innovation tool in the insurance sector to enhance social resilience to natural disasters and extreme climatic conditions, which can tremendously impact several economic sectors, including agriculture and as a result food security. In this context, this research investigates the association between rainfall Gini index and drought events in Western Europe. For this purpose, we acquired ERA5 data for daily precipitation for five locations from 1980 to 2022. Gini index (GI) values were calculated and analyzed for each location with the Mann–Kendall test at a 5% significance level. As expected, a minimal decreasing trend has been observed for daily precipitation, while an increasing trend was recorded for Gini index. In addition, data on the soil moisture index (SMI) and top drought events were extracted from the European Drought Observatory (EDO) to explore their potential connection with the Gini index over time and space. Although a moderately low to negligible correlation, ranging between −0.27 and 0.02, was found between SMI and GI, a qualitative comparison between major drought episodes and Gini index anomaly showed that similar spatiotemporal patterns are present across the region, particularly for extreme drought events in 1996–1997 and 2003. The current study elucidates the rainfall Gini index's efficiency as a drought indicator for qualitative analysis, yet more work must be conducted to quantitatively evaluate its association with drought magnitude.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1161","citationCount":"2","resultStr":"{\"title\":\"A spatiotemporal analysis of precipitation anomalies using rainfall Gini index between 1980 and 2022\",\"authors\":\"Ghada Sahbeni, Jean Baptiste Pleynet, Konrad Jarocki\",\"doi\":\"10.1002/asl.1161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a reaction to the expanding challenges associated with social susceptibility and their interconnection to diverse environmental threats, parametric insurance plays a key role as an innovation tool in the insurance sector to enhance social resilience to natural disasters and extreme climatic conditions, which can tremendously impact several economic sectors, including agriculture and as a result food security. In this context, this research investigates the association between rainfall Gini index and drought events in Western Europe. For this purpose, we acquired ERA5 data for daily precipitation for five locations from 1980 to 2022. Gini index (GI) values were calculated and analyzed for each location with the Mann–Kendall test at a 5% significance level. As expected, a minimal decreasing trend has been observed for daily precipitation, while an increasing trend was recorded for Gini index. In addition, data on the soil moisture index (SMI) and top drought events were extracted from the European Drought Observatory (EDO) to explore their potential connection with the Gini index over time and space. Although a moderately low to negligible correlation, ranging between −0.27 and 0.02, was found between SMI and GI, a qualitative comparison between major drought episodes and Gini index anomaly showed that similar spatiotemporal patterns are present across the region, particularly for extreme drought events in 1996–1997 and 2003. The current study elucidates the rainfall Gini index's efficiency as a drought indicator for qualitative analysis, yet more work must be conducted to quantitatively evaluate its association with drought magnitude.</p>\",\"PeriodicalId\":50734,\"journal\":{\"name\":\"Atmospheric Science Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1161\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asl.1161\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1161","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
A spatiotemporal analysis of precipitation anomalies using rainfall Gini index between 1980 and 2022
As a reaction to the expanding challenges associated with social susceptibility and their interconnection to diverse environmental threats, parametric insurance plays a key role as an innovation tool in the insurance sector to enhance social resilience to natural disasters and extreme climatic conditions, which can tremendously impact several economic sectors, including agriculture and as a result food security. In this context, this research investigates the association between rainfall Gini index and drought events in Western Europe. For this purpose, we acquired ERA5 data for daily precipitation for five locations from 1980 to 2022. Gini index (GI) values were calculated and analyzed for each location with the Mann–Kendall test at a 5% significance level. As expected, a minimal decreasing trend has been observed for daily precipitation, while an increasing trend was recorded for Gini index. In addition, data on the soil moisture index (SMI) and top drought events were extracted from the European Drought Observatory (EDO) to explore their potential connection with the Gini index over time and space. Although a moderately low to negligible correlation, ranging between −0.27 and 0.02, was found between SMI and GI, a qualitative comparison between major drought episodes and Gini index anomaly showed that similar spatiotemporal patterns are present across the region, particularly for extreme drought events in 1996–1997 and 2003. The current study elucidates the rainfall Gini index's efficiency as a drought indicator for qualitative analysis, yet more work must be conducted to quantitatively evaluate its association with drought magnitude.
期刊介绍:
Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques.
We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.