{"title":"多极点Hardy-Leray算子的Dirichlet问题","authors":"Huyuan Chen, Xiaowei Chen","doi":"10.1515/anona-2022-0320","DOIUrl":null,"url":null,"abstract":"Abstract Our aim of this article is to study qualitative properties of Dirichlet problems involving the Hardy-Leray operator ℒ V ≔ − Δ + V {{\\mathcal{ {\\mathcal L} }}}_{V}:= -\\Delta +V , where V ( x ) = ∑ i = 1 m μ i ∣ x − A i ∣ 2 V\\left(x)={\\sum }_{i=1}^{m}\\frac{{\\mu }_{i}}{{| x-{A}_{i}| }^{2}} , with μ i ≥ − ( N − 2 ) 2 4 {\\mu }_{i}\\ge -\\frac{{\\left(N-2)}^{2}}{4} being the Hardy-Leray potential containing the polars’ set A m = { A i : i = 1 , … , m } {{\\mathcal{A}}}_{m}=\\left\\{{A}_{i}:i=1,\\ldots ,m\\right\\} in R N {{\\mathbb{R}}}^{N} ( N ≥ 2 N\\ge 2 ). Since the inverse-square potentials are critical with respect to the Laplacian operator, the coefficients { μ i } i = 1 m {\\left\\{{\\mu }_{i}\\right\\}}_{i=1}^{m} and the locations of polars { A i } \\left\\{{A}_{i}\\right\\} play an important role in the properties of solutions to the related Poisson problems subject to zero Dirichlet boundary conditions. Let Ω \\Omega be a bounded domain containing A m {{\\mathcal{A}}}_{m} . First, we obtain increasing Dirichlet eigenvalues: ℒ V u = λ u in Ω , u = 0 on ∂ Ω , {{\\mathcal{ {\\mathcal L} }}}_{V}u=\\lambda u\\hspace{1.0em}{\\rm{in}}\\hspace{0.33em}\\Omega ,\\hspace{1.0em}u=0\\hspace{1.0em}{\\rm{on}}\\hspace{0.33em}\\partial \\Omega , and the positivity of the principle eigenvalue depends on the strength μ i {\\mu }_{i} and polars’ setting. When the spectral does not contain the origin, we then consider the weak solutions of the Poisson problem ( E ) ℒ V u = ν in Ω , u = 0 on ∂ Ω , \\left(E)\\hspace{1.0em}\\hspace{1.0em}{{\\mathcal{ {\\mathcal L} }}}_{V}u=\\nu \\hspace{1em}{\\rm{in}}\\hspace{0.33em}\\Omega ,\\hspace{1.0em}u=0\\hspace{1em}{\\rm{on}}\\hspace{0.33em}\\partial \\Omega , when ν \\nu belongs to L p ( Ω ) {L}^{p}\\left(\\Omega ) , with p > 2 N N + 2 p\\gt \\frac{2N}{N+2} in the variational framework, and we obtain a global weighted L ∞ {L}^{\\infty } estimate when p > N 2 p\\gt \\frac{N}{2} . When the principle eigenvalue is positive and ν \\nu is a Radon measure, we build a weighted distributional framework to show the existence of weak solutions of problem ( E ) \\left(E) . Moreover, via this weighted distributional framework, we can obtain a sharp assumption of ν ∈ C γ ( Ω ¯ \\ A m ) \\nu \\in {{\\mathcal{C}}}^{\\gamma }\\left(\\bar{\\Omega }\\setminus {{\\mathcal{A}}}_{m}) for the existence of isolated singular solutions for problem ( E ) \\left(E) .","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dirichlet problems involving the Hardy-Leray operators with multiple polars\",\"authors\":\"Huyuan Chen, Xiaowei Chen\",\"doi\":\"10.1515/anona-2022-0320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Our aim of this article is to study qualitative properties of Dirichlet problems involving the Hardy-Leray operator ℒ V ≔ − Δ + V {{\\\\mathcal{ {\\\\mathcal L} }}}_{V}:= -\\\\Delta +V , where V ( x ) = ∑ i = 1 m μ i ∣ x − A i ∣ 2 V\\\\left(x)={\\\\sum }_{i=1}^{m}\\\\frac{{\\\\mu }_{i}}{{| x-{A}_{i}| }^{2}} , with μ i ≥ − ( N − 2 ) 2 4 {\\\\mu }_{i}\\\\ge -\\\\frac{{\\\\left(N-2)}^{2}}{4} being the Hardy-Leray potential containing the polars’ set A m = { A i : i = 1 , … , m } {{\\\\mathcal{A}}}_{m}=\\\\left\\\\{{A}_{i}:i=1,\\\\ldots ,m\\\\right\\\\} in R N {{\\\\mathbb{R}}}^{N} ( N ≥ 2 N\\\\ge 2 ). Since the inverse-square potentials are critical with respect to the Laplacian operator, the coefficients { μ i } i = 1 m {\\\\left\\\\{{\\\\mu }_{i}\\\\right\\\\}}_{i=1}^{m} and the locations of polars { A i } \\\\left\\\\{{A}_{i}\\\\right\\\\} play an important role in the properties of solutions to the related Poisson problems subject to zero Dirichlet boundary conditions. Let Ω \\\\Omega be a bounded domain containing A m {{\\\\mathcal{A}}}_{m} . First, we obtain increasing Dirichlet eigenvalues: ℒ V u = λ u in Ω , u = 0 on ∂ Ω , {{\\\\mathcal{ {\\\\mathcal L} }}}_{V}u=\\\\lambda u\\\\hspace{1.0em}{\\\\rm{in}}\\\\hspace{0.33em}\\\\Omega ,\\\\hspace{1.0em}u=0\\\\hspace{1.0em}{\\\\rm{on}}\\\\hspace{0.33em}\\\\partial \\\\Omega , and the positivity of the principle eigenvalue depends on the strength μ i {\\\\mu }_{i} and polars’ setting. When the spectral does not contain the origin, we then consider the weak solutions of the Poisson problem ( E ) ℒ V u = ν in Ω , u = 0 on ∂ Ω , \\\\left(E)\\\\hspace{1.0em}\\\\hspace{1.0em}{{\\\\mathcal{ {\\\\mathcal L} }}}_{V}u=\\\\nu \\\\hspace{1em}{\\\\rm{in}}\\\\hspace{0.33em}\\\\Omega ,\\\\hspace{1.0em}u=0\\\\hspace{1em}{\\\\rm{on}}\\\\hspace{0.33em}\\\\partial \\\\Omega , when ν \\\\nu belongs to L p ( Ω ) {L}^{p}\\\\left(\\\\Omega ) , with p > 2 N N + 2 p\\\\gt \\\\frac{2N}{N+2} in the variational framework, and we obtain a global weighted L ∞ {L}^{\\\\infty } estimate when p > N 2 p\\\\gt \\\\frac{N}{2} . When the principle eigenvalue is positive and ν \\\\nu is a Radon measure, we build a weighted distributional framework to show the existence of weak solutions of problem ( E ) \\\\left(E) . Moreover, via this weighted distributional framework, we can obtain a sharp assumption of ν ∈ C γ ( Ω ¯ \\\\ A m ) \\\\nu \\\\in {{\\\\mathcal{C}}}^{\\\\gamma }\\\\left(\\\\bar{\\\\Omega }\\\\setminus {{\\\\mathcal{A}}}_{m}) for the existence of isolated singular solutions for problem ( E ) \\\\left(E) .\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0320\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0320","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
摘要
摘要本文的目的是研究涉及Hardy-Leray算子的Dirichlet问题的定性性质ℒ V−Δ+V-{A}_{i} |}^{2}},其中μi≥−(N−2)2 4{\mu}_\{{A}_{i} :i=1,\ldots,m\right\}在R N{\mathbb{R}}^{N}中(N≥2N\ge2)。由于平方反比势对于拉普拉斯算子是关键的,因此系数{μi}i=1m{\lang1033\{\mu}_{i}\right}}_\{{A}_{i} 在零Dirichlet边界条件下相关Poisson问题解的性质中起着重要作用。设Ω\Omega是一个包含a m{\mathcal{a}}_{m}的有界域。首先,我们获得了增加的狄利克雷特征值:ℒ V u=λu,单位为Ω,u=0,在¦ΒΩ上,{\mathcal{\math L}}_{V}u=\lambda u\hspace{1.0em}{\rm{in}}\space{0.33em}\Omega,\space{1.0em}u=0\hspace{1.0em}{\rm{on}}\space{0.33em}\partial \Omega,并且主特征值的正性取决于强度μi{\mu}_{i}和polar的设置。当谱不包含原点时,我们考虑泊松问题(E)的弱解ℒ V u=¦Α,u=¦ΒΩ上的0,\left(E)\hspace{1.0em}\space{1.0em}{\mathcal{L}}_{V}u=\nu\hspace{1em}{\rm{in}}\space{0.33em}\Omega,\space{1.0em}u=0\hspace{1em}{\rm{on}}\space{0.33em}\partial\Omega,当Γ\nu属于Lp(Ω){L}^{p}\left(\Omega)时,在变分框架中p>2N+2p}{{N+2},并且当p>N2}{。当主特征值为正,且Γ\nu为Radon测度时,我们建立了一个加权分布框架来证明问题(E)\left(E)弱解的存在性。此外,通过这个加权分布框架,我们可以得到一个关于问题(E)\left(E)存在孤立奇异解的尖锐假设,即{\mathcal{C}}}^{\gamma}\left(\bar{\Omega}\setminus{\math cal{a}}}}_{m})中的Γ∈Cγ(Ω\am)\nu。
Dirichlet problems involving the Hardy-Leray operators with multiple polars
Abstract Our aim of this article is to study qualitative properties of Dirichlet problems involving the Hardy-Leray operator ℒ V ≔ − Δ + V {{\mathcal{ {\mathcal L} }}}_{V}:= -\Delta +V , where V ( x ) = ∑ i = 1 m μ i ∣ x − A i ∣ 2 V\left(x)={\sum }_{i=1}^{m}\frac{{\mu }_{i}}{{| x-{A}_{i}| }^{2}} , with μ i ≥ − ( N − 2 ) 2 4 {\mu }_{i}\ge -\frac{{\left(N-2)}^{2}}{4} being the Hardy-Leray potential containing the polars’ set A m = { A i : i = 1 , … , m } {{\mathcal{A}}}_{m}=\left\{{A}_{i}:i=1,\ldots ,m\right\} in R N {{\mathbb{R}}}^{N} ( N ≥ 2 N\ge 2 ). Since the inverse-square potentials are critical with respect to the Laplacian operator, the coefficients { μ i } i = 1 m {\left\{{\mu }_{i}\right\}}_{i=1}^{m} and the locations of polars { A i } \left\{{A}_{i}\right\} play an important role in the properties of solutions to the related Poisson problems subject to zero Dirichlet boundary conditions. Let Ω \Omega be a bounded domain containing A m {{\mathcal{A}}}_{m} . First, we obtain increasing Dirichlet eigenvalues: ℒ V u = λ u in Ω , u = 0 on ∂ Ω , {{\mathcal{ {\mathcal L} }}}_{V}u=\lambda u\hspace{1.0em}{\rm{in}}\hspace{0.33em}\Omega ,\hspace{1.0em}u=0\hspace{1.0em}{\rm{on}}\hspace{0.33em}\partial \Omega , and the positivity of the principle eigenvalue depends on the strength μ i {\mu }_{i} and polars’ setting. When the spectral does not contain the origin, we then consider the weak solutions of the Poisson problem ( E ) ℒ V u = ν in Ω , u = 0 on ∂ Ω , \left(E)\hspace{1.0em}\hspace{1.0em}{{\mathcal{ {\mathcal L} }}}_{V}u=\nu \hspace{1em}{\rm{in}}\hspace{0.33em}\Omega ,\hspace{1.0em}u=0\hspace{1em}{\rm{on}}\hspace{0.33em}\partial \Omega , when ν \nu belongs to L p ( Ω ) {L}^{p}\left(\Omega ) , with p > 2 N N + 2 p\gt \frac{2N}{N+2} in the variational framework, and we obtain a global weighted L ∞ {L}^{\infty } estimate when p > N 2 p\gt \frac{N}{2} . When the principle eigenvalue is positive and ν \nu is a Radon measure, we build a weighted distributional framework to show the existence of weak solutions of problem ( E ) \left(E) . Moreover, via this weighted distributional framework, we can obtain a sharp assumption of ν ∈ C γ ( Ω ¯ \ A m ) \nu \in {{\mathcal{C}}}^{\gamma }\left(\bar{\Omega }\setminus {{\mathcal{A}}}_{m}) for the existence of isolated singular solutions for problem ( E ) \left(E) .