极地中间层夏季回波的雷达频率依赖性

IF 2.9 3区 地球科学
ShuCan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong Xu, Safi Ullah, Abdur Rauf, Abdel Hannachid
{"title":"极地中间层夏季回波的雷达频率依赖性","authors":"ShuCan Ge,&nbsp;HaiLong Li,&nbsp;Lin Meng,&nbsp;MaoYan Wang,&nbsp;Tong Xu,&nbsp;Safi Ullah,&nbsp;Abdur Rauf,&nbsp;Abdel Hannachid","doi":"10.26464/epp2020061","DOIUrl":null,"url":null,"abstract":"<p>Polar mesosphere summer echoes (PMSEs) are very strong radar echoes in the polar mesopause in local summer. Here we present the frequency dependence of the volume reflectivity and the effect of energetic particle precipitation on modulated PMSEs by using PMSEs observations carried out by European Incoherent SCATter (EISCAT) heating equipment simultaneously with very high frequency (VHF) radar and ultra high frequency (UHF) radar on 12 July 2007. According to the experimental observations, the PMSEs occurrence rate at VHF was much higher than that at UHF, and the altitude of the PMSEs maximum observed at VHF was higher than that at UHF. Overlapping regions were observed by VHF radar between high energetic particle precipitation and the PMSEs. In addition, high-frequency heating had a very limited impact on PMSEs when the UHF electron density was enhanced because of energetic particle precipitation. In addition, an updated qualitative method was used to study the relationship between volume reflectivity and frequency. The volume reflectivity was found to be inversely proportional to the fourth power of radar frequency. The theoretical and experimental results provide a definitive data foundation for further analysis and investigation of the physical mechanism of PMSEs.</p>","PeriodicalId":45246,"journal":{"name":"Earth and Planetary Physics","volume":"4 6","pages":"571-578"},"PeriodicalIF":2.9000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the radar frequency dependence of polar mesosphere summer echoes\",\"authors\":\"ShuCan Ge,&nbsp;HaiLong Li,&nbsp;Lin Meng,&nbsp;MaoYan Wang,&nbsp;Tong Xu,&nbsp;Safi Ullah,&nbsp;Abdur Rauf,&nbsp;Abdel Hannachid\",\"doi\":\"10.26464/epp2020061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polar mesosphere summer echoes (PMSEs) are very strong radar echoes in the polar mesopause in local summer. Here we present the frequency dependence of the volume reflectivity and the effect of energetic particle precipitation on modulated PMSEs by using PMSEs observations carried out by European Incoherent SCATter (EISCAT) heating equipment simultaneously with very high frequency (VHF) radar and ultra high frequency (UHF) radar on 12 July 2007. According to the experimental observations, the PMSEs occurrence rate at VHF was much higher than that at UHF, and the altitude of the PMSEs maximum observed at VHF was higher than that at UHF. Overlapping regions were observed by VHF radar between high energetic particle precipitation and the PMSEs. In addition, high-frequency heating had a very limited impact on PMSEs when the UHF electron density was enhanced because of energetic particle precipitation. In addition, an updated qualitative method was used to study the relationship between volume reflectivity and frequency. The volume reflectivity was found to be inversely proportional to the fourth power of radar frequency. The theoretical and experimental results provide a definitive data foundation for further analysis and investigation of the physical mechanism of PMSEs.</p>\",\"PeriodicalId\":45246,\"journal\":{\"name\":\"Earth and Planetary Physics\",\"volume\":\"4 6\",\"pages\":\"571-578\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2020-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Planetary Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.26464/epp2020061\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Planetary Physics","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.26464/epp2020061","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

极地中间层夏季回波(PMSEs)是局地夏季在极地中间层顶的非常强的雷达回波。本文利用2007年7月12日欧洲非相干散射(EISCAT)加热设备与甚高频(VHF)和超高频(UHF)雷达同时进行的pmse观测数据,研究了体积反射率的频率依赖性和高能粒子降水对调制pmse的影响。实验观测表明,超高频pmse的发生率远高于超高频,且在超高频观测到的最大pmse高度高于超高频。VHF雷达观测到高能粒子降水与pmse之间存在重叠区域。此外,高频加热对pmse的影响非常有限,当超高频电子密度因高能粒子沉淀而增强时。此外,采用一种更新的定性方法研究了体积反射率与频率的关系。体积反射率与雷达频率的四次方成反比。理论和实验结果为进一步分析和研究pmse的物理机理提供了明确的数据基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the radar frequency dependence of polar mesosphere summer echoes

Polar mesosphere summer echoes (PMSEs) are very strong radar echoes in the polar mesopause in local summer. Here we present the frequency dependence of the volume reflectivity and the effect of energetic particle precipitation on modulated PMSEs by using PMSEs observations carried out by European Incoherent SCATter (EISCAT) heating equipment simultaneously with very high frequency (VHF) radar and ultra high frequency (UHF) radar on 12 July 2007. According to the experimental observations, the PMSEs occurrence rate at VHF was much higher than that at UHF, and the altitude of the PMSEs maximum observed at VHF was higher than that at UHF. Overlapping regions were observed by VHF radar between high energetic particle precipitation and the PMSEs. In addition, high-frequency heating had a very limited impact on PMSEs when the UHF electron density was enhanced because of energetic particle precipitation. In addition, an updated qualitative method was used to study the relationship between volume reflectivity and frequency. The volume reflectivity was found to be inversely proportional to the fourth power of radar frequency. The theoretical and experimental results provide a definitive data foundation for further analysis and investigation of the physical mechanism of PMSEs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Planetary Physics
Earth and Planetary Physics GEOSCIENCES, MULTIDISCIPLINARY-
自引率
17.20%
发文量
174
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信