适用于低功率应用的1.1V 25 ppm/°C弛豫振荡器,线灵敏度为0.045%/V

IF 1.6 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Yizhuo Liao, P. K. Chan
{"title":"适用于低功率应用的1.1V 25 ppm/°C弛豫振荡器,线灵敏度为0.045%/V","authors":"Yizhuo Liao, P. K. Chan","doi":"10.3390/jlpea13010015","DOIUrl":null,"url":null,"abstract":"A fully-integrated CMOS relaxation oscillator, realized in 40 nm CMOS technology, is presented. The oscillator includes a stable two-transistor based voltage reference without an operational amplifier, a simple current reference employing the temperature-compensated composite resistor, and the approximated complementary to absolute temperature (CTAT) delay-based comparators compensate for the approximated proportional to absolute temperature (PTAT) delay arising from the leakage currents in the switches. This relaxation oscillator is designed to output a square wave with a frequency of 64 kHz in a duty cycle of 50% at a 1.1 V supply. The simulation results demonstrated that the circuit can generate a square wave, with stable frequency, against temperature and supply variation, while exhibiting low current consumption. For the temperature range from −20 °C to 80 °C at a 1.1 V supply, the oscillator’ output frequency achieved a temperature coefficient (T.C.) of 12.4 ppm/°C in a typical corner in one sample simulation. For a 200-sample Monte Carlo simulation, the obtained T.C. is 25 ppm/°C. Under typical corners and room temperatures, the simulated line sensitivity is 0.045%/V with the supply from 1.1 V to 1.6 V, and the dynamic current consumption is 552 nA. A better figure-of-merit (FoM), which equals 0.129%, is displayed when compared to the representative prior-art works.","PeriodicalId":38100,"journal":{"name":"Journal of Low Power Electronics and Applications","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2023-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A 1.1 V 25 ppm/°C Relaxation Oscillator with 0.045%/V Line Sensitivity for Low Power Applications\",\"authors\":\"Yizhuo Liao, P. K. Chan\",\"doi\":\"10.3390/jlpea13010015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fully-integrated CMOS relaxation oscillator, realized in 40 nm CMOS technology, is presented. The oscillator includes a stable two-transistor based voltage reference without an operational amplifier, a simple current reference employing the temperature-compensated composite resistor, and the approximated complementary to absolute temperature (CTAT) delay-based comparators compensate for the approximated proportional to absolute temperature (PTAT) delay arising from the leakage currents in the switches. This relaxation oscillator is designed to output a square wave with a frequency of 64 kHz in a duty cycle of 50% at a 1.1 V supply. The simulation results demonstrated that the circuit can generate a square wave, with stable frequency, against temperature and supply variation, while exhibiting low current consumption. For the temperature range from −20 °C to 80 °C at a 1.1 V supply, the oscillator’ output frequency achieved a temperature coefficient (T.C.) of 12.4 ppm/°C in a typical corner in one sample simulation. For a 200-sample Monte Carlo simulation, the obtained T.C. is 25 ppm/°C. Under typical corners and room temperatures, the simulated line sensitivity is 0.045%/V with the supply from 1.1 V to 1.6 V, and the dynamic current consumption is 552 nA. A better figure-of-merit (FoM), which equals 0.129%, is displayed when compared to the representative prior-art works.\",\"PeriodicalId\":38100,\"journal\":{\"name\":\"Journal of Low Power Electronics and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2023-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Low Power Electronics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jlpea13010015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Power Electronics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jlpea13010015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 2

摘要

介绍了一种采用40nm CMOS工艺实现的全集成CMOS弛豫振荡器。振荡器包括不带运算放大器的稳定的基于两个晶体管的电压基准、采用温度补偿复合电阻器的简单电流基准、以及使用温度补偿复合电阻的电流基准,并且近似的基于绝对温度互补(CTAT)延迟的比较器补偿由开关中的泄漏电流引起的近似的绝对温度成比例(PTAT)延迟。该张弛振荡器被设计为在1.1V电源下以50%的占空比输出频率为64kHz的方波。仿真结果表明,该电路可以产生频率稳定的方波,抵抗温度和电源的变化,同时表现出低电流消耗。在1.1V电源下,温度范围为−20°C至80°C时,振荡器的输出频率在一个样本模拟的典型角落中实现了12.4 ppm/°C的温度系数(T.C.)。对于200个样本的蒙特卡罗模拟,获得的T.C.为25 ppm/°C。在典型的角落和室温下,模拟线路灵敏度为0.045%/V,电源电压为1.1V至1.6V,动态电流消耗为552nA。与代表性的现有技术作品相比,显示出更好的品质因数(FoM),即0.129%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A 1.1 V 25 ppm/°C Relaxation Oscillator with 0.045%/V Line Sensitivity for Low Power Applications
A fully-integrated CMOS relaxation oscillator, realized in 40 nm CMOS technology, is presented. The oscillator includes a stable two-transistor based voltage reference without an operational amplifier, a simple current reference employing the temperature-compensated composite resistor, and the approximated complementary to absolute temperature (CTAT) delay-based comparators compensate for the approximated proportional to absolute temperature (PTAT) delay arising from the leakage currents in the switches. This relaxation oscillator is designed to output a square wave with a frequency of 64 kHz in a duty cycle of 50% at a 1.1 V supply. The simulation results demonstrated that the circuit can generate a square wave, with stable frequency, against temperature and supply variation, while exhibiting low current consumption. For the temperature range from −20 °C to 80 °C at a 1.1 V supply, the oscillator’ output frequency achieved a temperature coefficient (T.C.) of 12.4 ppm/°C in a typical corner in one sample simulation. For a 200-sample Monte Carlo simulation, the obtained T.C. is 25 ppm/°C. Under typical corners and room temperatures, the simulated line sensitivity is 0.045%/V with the supply from 1.1 V to 1.6 V, and the dynamic current consumption is 552 nA. A better figure-of-merit (FoM), which equals 0.129%, is displayed when compared to the representative prior-art works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Low Power Electronics and Applications
Journal of Low Power Electronics and Applications Engineering-Electrical and Electronic Engineering
CiteScore
3.60
自引率
14.30%
发文量
57
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信