Dnwm Heitzig, B. V. van Oudheusden, D. Olejnik, M. Karásek
{"title":"前飞不对称流入对相互作用扑翼变形的影响","authors":"Dnwm Heitzig, B. V. van Oudheusden, D. Olejnik, M. Karásek","doi":"10.1177/1756829320941002","DOIUrl":null,"url":null,"abstract":"This study investigates the wing deformation of the DelFly II in forward flight conditions. A measurement setup was developed that maintains adequate viewing axes of the flapping wings for all pitch angles. Recordings of a high-speed camera pair were processed using a point tracking algorithm, allowing 136 points per wing to be measured simultaneously with an estimated accuracy of 0.25 mm. The measurements of forward flight show little change in the typical clap-and-peel motion, suggesting similar effectiveness in all cases. It was found that an air-buffer remains at all times during this phase. The wing rotation and camber reduction during the upstroke suggests low loading during the upstroke in fast forward flight. In slow cases a torsional wave and recoil is found. A study of the isolated effects showed asymmetric deformations even in symmetric freestream conditions. Furthermore, it shows a dominant role of the flapping frequency on the clap-and-peel, while the freestream velocity reduces wing loading outside this phase.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829320941002","citationCount":"1","resultStr":"{\"title\":\"Effects of asymmetrical inflow in forward flight on the deformation of interacting flapping wings\",\"authors\":\"Dnwm Heitzig, B. V. van Oudheusden, D. Olejnik, M. Karásek\",\"doi\":\"10.1177/1756829320941002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the wing deformation of the DelFly II in forward flight conditions. A measurement setup was developed that maintains adequate viewing axes of the flapping wings for all pitch angles. Recordings of a high-speed camera pair were processed using a point tracking algorithm, allowing 136 points per wing to be measured simultaneously with an estimated accuracy of 0.25 mm. The measurements of forward flight show little change in the typical clap-and-peel motion, suggesting similar effectiveness in all cases. It was found that an air-buffer remains at all times during this phase. The wing rotation and camber reduction during the upstroke suggests low loading during the upstroke in fast forward flight. In slow cases a torsional wave and recoil is found. A study of the isolated effects showed asymmetric deformations even in symmetric freestream conditions. Furthermore, it shows a dominant role of the flapping frequency on the clap-and-peel, while the freestream velocity reduces wing loading outside this phase.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1177/1756829320941002\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/1756829320941002\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1756829320941002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effects of asymmetrical inflow in forward flight on the deformation of interacting flapping wings
This study investigates the wing deformation of the DelFly II in forward flight conditions. A measurement setup was developed that maintains adequate viewing axes of the flapping wings for all pitch angles. Recordings of a high-speed camera pair were processed using a point tracking algorithm, allowing 136 points per wing to be measured simultaneously with an estimated accuracy of 0.25 mm. The measurements of forward flight show little change in the typical clap-and-peel motion, suggesting similar effectiveness in all cases. It was found that an air-buffer remains at all times during this phase. The wing rotation and camber reduction during the upstroke suggests low loading during the upstroke in fast forward flight. In slow cases a torsional wave and recoil is found. A study of the isolated effects showed asymmetric deformations even in symmetric freestream conditions. Furthermore, it shows a dominant role of the flapping frequency on the clap-and-peel, while the freestream velocity reduces wing loading outside this phase.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.