{"title":"复合材料蜂窝夹层圆柱壳模态密度的实验研究","authors":"K. Renji, S. J. K. Florence, S. Deshpande","doi":"10.20855/ijav.2020.25.11626","DOIUrl":null,"url":null,"abstract":"Honeycomb sandwich composite cylindrical shells are widely used in aerospace structures. Experimentally observed modal densities of such shells are not reported. In this work, modal densities of a typical honeycomb sandwich composite cylinder are obtained experimentally by measuring the drive point admittance. The results are in good agreement with those estimated theoretically that incorporated transverse shear deformation. Its limitations at higher frequencies are investigated and the frequency beyond which the estimation is in error is determined. The results provide an example to prove the need for measuring the imaginary part of the driving point admittance and using it in the determination of the modal densities of honeycomb sandwich-type structures. Experiments are carried out with two boundary conditions for the cylinder and the results provide experimental evidence for the fact that the modal densities at high frequencies do not depend on the boundary conditions. At higher frequencies, it is expected that both of the face sheets vibrate independently. This frequency can be approximately estimated as the fundamental bending mode frequency of the wall of the honeycomb core. The modal density determined through the measured driving point admittance will have a sharp reduction at this frequency and this feature can be used in identifying this phenomenon. The experimental results are in very good agreement with the above results.","PeriodicalId":49185,"journal":{"name":"International Journal of Acoustics and Vibration","volume":"25 1","pages":"112-120"},"PeriodicalIF":0.8000,"publicationDate":"2020-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An Experimental Investigation of Modal Densities of Composite Honeycomb Sandwich Cylindrical Shells\",\"authors\":\"K. Renji, S. J. K. Florence, S. Deshpande\",\"doi\":\"10.20855/ijav.2020.25.11626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Honeycomb sandwich composite cylindrical shells are widely used in aerospace structures. Experimentally observed modal densities of such shells are not reported. In this work, modal densities of a typical honeycomb sandwich composite cylinder are obtained experimentally by measuring the drive point admittance. The results are in good agreement with those estimated theoretically that incorporated transverse shear deformation. Its limitations at higher frequencies are investigated and the frequency beyond which the estimation is in error is determined. The results provide an example to prove the need for measuring the imaginary part of the driving point admittance and using it in the determination of the modal densities of honeycomb sandwich-type structures. Experiments are carried out with two boundary conditions for the cylinder and the results provide experimental evidence for the fact that the modal densities at high frequencies do not depend on the boundary conditions. At higher frequencies, it is expected that both of the face sheets vibrate independently. This frequency can be approximately estimated as the fundamental bending mode frequency of the wall of the honeycomb core. The modal density determined through the measured driving point admittance will have a sharp reduction at this frequency and this feature can be used in identifying this phenomenon. The experimental results are in very good agreement with the above results.\",\"PeriodicalId\":49185,\"journal\":{\"name\":\"International Journal of Acoustics and Vibration\",\"volume\":\"25 1\",\"pages\":\"112-120\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Acoustics and Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.20855/ijav.2020.25.11626\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ACOUSTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Acoustics and Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.20855/ijav.2020.25.11626","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ACOUSTICS","Score":null,"Total":0}
An Experimental Investigation of Modal Densities of Composite Honeycomb Sandwich Cylindrical Shells
Honeycomb sandwich composite cylindrical shells are widely used in aerospace structures. Experimentally observed modal densities of such shells are not reported. In this work, modal densities of a typical honeycomb sandwich composite cylinder are obtained experimentally by measuring the drive point admittance. The results are in good agreement with those estimated theoretically that incorporated transverse shear deformation. Its limitations at higher frequencies are investigated and the frequency beyond which the estimation is in error is determined. The results provide an example to prove the need for measuring the imaginary part of the driving point admittance and using it in the determination of the modal densities of honeycomb sandwich-type structures. Experiments are carried out with two boundary conditions for the cylinder and the results provide experimental evidence for the fact that the modal densities at high frequencies do not depend on the boundary conditions. At higher frequencies, it is expected that both of the face sheets vibrate independently. This frequency can be approximately estimated as the fundamental bending mode frequency of the wall of the honeycomb core. The modal density determined through the measured driving point admittance will have a sharp reduction at this frequency and this feature can be used in identifying this phenomenon. The experimental results are in very good agreement with the above results.
期刊介绍:
The International Journal of Acoustics and Vibration (IJAV) is the refereed open-access journal of the International Institute of Acoustics and Vibration (IIAV). The IIAV is a non-profit international scientific society founded in 1995. The primary objective of the Institute is to advance the science of acoustics and vibration by creating an international organization that is responsive to the needs of scientists and engineers concerned with acoustics and vibration problems all around the world.
Manuscripts of articles, technical notes and letters-to-the-editor should be submitted to the Editor-in-Chief via the on-line submission system. Authors wishing to submit an article need to log in on the IJAV website first. Users logged into the website are able to submit new articles, track the status of their articles already submitted, upload revised articles, responses and/or rebuttals to reviewers, figures, biographies, photographs, copyright transfer agreements, and send comments to the editor. Each time the status of an article submitted changes, the author will also be notified automatically by email.
IIAV members (in good standing for at least six months) can publish in IJAV free of charge and their papers will be displayed on-line immediately after they have been edited and laid-out.
Non-IIAV members will be required to pay a mandatory Article Processing Charge (APC) of $200 USD if the manuscript is accepted for publication after review. The APC fee allows IIAV to make your research freely available to all readers using the Open Access model.
In addition, Non-IIAV members who pay an extra voluntary publication fee (EVPF) of $500 USD will be granted expedited publication in the IJAV Journal and their papers can be displayed on the Internet after acceptance. If the $200 USD (APC) publication fee is not honored, papers will not be published. Authors who do not pay the voluntary fixed fee of $500 USD will have their papers published but there may be a considerable delay.
The English text of the papers must be of high quality. If the text submitted is of low quality the manuscript will be more than likely rejected. For authors whose first language is not English, we recommend having their manuscripts reviewed and edited prior to submission by a native English speaker with scientific expertise. There are many commercial editing services which can provide this service at a cost to the authors.