J. P. Sosa, M. M. Caceres, Jennifer Ross-Comptis, D. Hathaway, Jayati Mehta, Krunal Pandav, R. Pakala, Maliha Butt, Zeryab Dogar, Marie-Pierre Belizaire, Nada El Mazboudi, M. K. Pormento, Madiha Zaidi, Harshitha Mergey Devender, Hanyou Loh, Radhika Garimella, Niran Brahmbhatt
{"title":"抗击新冠肺炎的基于网络的应用程序","authors":"J. P. Sosa, M. M. Caceres, Jennifer Ross-Comptis, D. Hathaway, Jayati Mehta, Krunal Pandav, R. Pakala, Maliha Butt, Zeryab Dogar, Marie-Pierre Belizaire, Nada El Mazboudi, M. K. Pormento, Madiha Zaidi, Harshitha Mergey Devender, Hanyou Loh, Radhika Garimella, Niran Brahmbhatt","doi":"10.21037/JMAI-20-61","DOIUrl":null,"url":null,"abstract":"When and where the first case of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) appeared, remains controversial. However, it has proven to be highly infectious and capable of rapid mutation. Within months, it spread to over 213 countries infecting 21.7 million people and causing 770,000 deaths. SARS-CoV-2 belongs to a virus family known as Coronaviridae. It is transmitted through minute respiratory droplets produced by coughing, sneezing, or talking in close proximity to one another. Another mode of transmission is by droplets, touching surfaces contaminated with the virus, and touching the face, eyes, or mouth with the contaminated hands. Symptoms of the viral infection appear in 1–14 days and include fever, cough, fatigue, general weakness, sore throat, and muscular pains, while in severe cases it can lead to acute respiratory distress syndrome (ARDS), severe pneumonia, and sepsis (1). Coronavirus Disease 2019 (COVID-19) was declared a pandemic by the World Health Organization (WHO) on March 11, 2020. Not much is known about the virus, but research is still ongoing, and the search for treatment is underway. Strict standard operating measures (SOPs) are being used in order to limit the spread of the virus until a vaccine is developed. The rapid spread of SARS-CoV-2 has resulted in several difficulties regarding accurate and timely information dissemination, controlling the spread rate, and public health planning. This pandemic has proven to be a unique situation since it was recommended to limit physical interactions to prevent infection (2,3). Due to the social distancing measures enforced by many countries, it is more difficult for people to receive medical attention quickly and safely. To overcome this problem, be more efficient, and be able to save more lives, the use of artificial intelligence (AI) has been introduced. This has helped promote telehealth and allow patients to receive care in the comfort of their homes and decrease the patient load on the already overflowing hospitals. SARS-CoV-2 is a highly contagious virus, and as health professionals are closely dealing with the affected people, the use of AI has helped to decrease inpatient visits, thereby decreasing the workload and exposure. Using applications (henceforth referred to as apps) has helped remotely monitor patients while keeping in mind doctor-patient confidentiality and secure communication between them. Contact tracing through the apps has helped identify the ‘hotspots’ for the virus, track the spread, and contain it (4). These apps can be used in population screening and getting day-to-day updates of the areas where new cases are emerging. The use of apps improves productivity and efficiency in studies with large samples (5). It is for this reason that web and mobile-based apps are being used during this pandemic situation. Several apps deployed in different areas of the world are being used to accelerate and aid the process of geographical mapping of cases, symptom tracking, contact tracing, assistance with health care visits, and projection of spread and mortality (2-9). We aim to review and critically assess currently available mobile and web-based applications used in the fight against COVID-19 pandemic. Our goal is to use this information to support the development of the application created by the Larkin Health System: Hispanovida.com. We propose Editorial","PeriodicalId":73815,"journal":{"name":"Journal of medical artificial intelligence","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Web-Based Apps in the fight against COVID-19\",\"authors\":\"J. P. Sosa, M. M. Caceres, Jennifer Ross-Comptis, D. Hathaway, Jayati Mehta, Krunal Pandav, R. Pakala, Maliha Butt, Zeryab Dogar, Marie-Pierre Belizaire, Nada El Mazboudi, M. K. Pormento, Madiha Zaidi, Harshitha Mergey Devender, Hanyou Loh, Radhika Garimella, Niran Brahmbhatt\",\"doi\":\"10.21037/JMAI-20-61\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When and where the first case of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) appeared, remains controversial. However, it has proven to be highly infectious and capable of rapid mutation. Within months, it spread to over 213 countries infecting 21.7 million people and causing 770,000 deaths. SARS-CoV-2 belongs to a virus family known as Coronaviridae. It is transmitted through minute respiratory droplets produced by coughing, sneezing, or talking in close proximity to one another. Another mode of transmission is by droplets, touching surfaces contaminated with the virus, and touching the face, eyes, or mouth with the contaminated hands. Symptoms of the viral infection appear in 1–14 days and include fever, cough, fatigue, general weakness, sore throat, and muscular pains, while in severe cases it can lead to acute respiratory distress syndrome (ARDS), severe pneumonia, and sepsis (1). Coronavirus Disease 2019 (COVID-19) was declared a pandemic by the World Health Organization (WHO) on March 11, 2020. Not much is known about the virus, but research is still ongoing, and the search for treatment is underway. Strict standard operating measures (SOPs) are being used in order to limit the spread of the virus until a vaccine is developed. The rapid spread of SARS-CoV-2 has resulted in several difficulties regarding accurate and timely information dissemination, controlling the spread rate, and public health planning. This pandemic has proven to be a unique situation since it was recommended to limit physical interactions to prevent infection (2,3). Due to the social distancing measures enforced by many countries, it is more difficult for people to receive medical attention quickly and safely. To overcome this problem, be more efficient, and be able to save more lives, the use of artificial intelligence (AI) has been introduced. This has helped promote telehealth and allow patients to receive care in the comfort of their homes and decrease the patient load on the already overflowing hospitals. SARS-CoV-2 is a highly contagious virus, and as health professionals are closely dealing with the affected people, the use of AI has helped to decrease inpatient visits, thereby decreasing the workload and exposure. Using applications (henceforth referred to as apps) has helped remotely monitor patients while keeping in mind doctor-patient confidentiality and secure communication between them. Contact tracing through the apps has helped identify the ‘hotspots’ for the virus, track the spread, and contain it (4). These apps can be used in population screening and getting day-to-day updates of the areas where new cases are emerging. The use of apps improves productivity and efficiency in studies with large samples (5). It is for this reason that web and mobile-based apps are being used during this pandemic situation. Several apps deployed in different areas of the world are being used to accelerate and aid the process of geographical mapping of cases, symptom tracking, contact tracing, assistance with health care visits, and projection of spread and mortality (2-9). We aim to review and critically assess currently available mobile and web-based applications used in the fight against COVID-19 pandemic. Our goal is to use this information to support the development of the application created by the Larkin Health System: Hispanovida.com. We propose Editorial\",\"PeriodicalId\":73815,\"journal\":{\"name\":\"Journal of medical artificial intelligence\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of medical artificial intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21037/JMAI-20-61\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of medical artificial intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21037/JMAI-20-61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
When and where the first case of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) appeared, remains controversial. However, it has proven to be highly infectious and capable of rapid mutation. Within months, it spread to over 213 countries infecting 21.7 million people and causing 770,000 deaths. SARS-CoV-2 belongs to a virus family known as Coronaviridae. It is transmitted through minute respiratory droplets produced by coughing, sneezing, or talking in close proximity to one another. Another mode of transmission is by droplets, touching surfaces contaminated with the virus, and touching the face, eyes, or mouth with the contaminated hands. Symptoms of the viral infection appear in 1–14 days and include fever, cough, fatigue, general weakness, sore throat, and muscular pains, while in severe cases it can lead to acute respiratory distress syndrome (ARDS), severe pneumonia, and sepsis (1). Coronavirus Disease 2019 (COVID-19) was declared a pandemic by the World Health Organization (WHO) on March 11, 2020. Not much is known about the virus, but research is still ongoing, and the search for treatment is underway. Strict standard operating measures (SOPs) are being used in order to limit the spread of the virus until a vaccine is developed. The rapid spread of SARS-CoV-2 has resulted in several difficulties regarding accurate and timely information dissemination, controlling the spread rate, and public health planning. This pandemic has proven to be a unique situation since it was recommended to limit physical interactions to prevent infection (2,3). Due to the social distancing measures enforced by many countries, it is more difficult for people to receive medical attention quickly and safely. To overcome this problem, be more efficient, and be able to save more lives, the use of artificial intelligence (AI) has been introduced. This has helped promote telehealth and allow patients to receive care in the comfort of their homes and decrease the patient load on the already overflowing hospitals. SARS-CoV-2 is a highly contagious virus, and as health professionals are closely dealing with the affected people, the use of AI has helped to decrease inpatient visits, thereby decreasing the workload and exposure. Using applications (henceforth referred to as apps) has helped remotely monitor patients while keeping in mind doctor-patient confidentiality and secure communication between them. Contact tracing through the apps has helped identify the ‘hotspots’ for the virus, track the spread, and contain it (4). These apps can be used in population screening and getting day-to-day updates of the areas where new cases are emerging. The use of apps improves productivity and efficiency in studies with large samples (5). It is for this reason that web and mobile-based apps are being used during this pandemic situation. Several apps deployed in different areas of the world are being used to accelerate and aid the process of geographical mapping of cases, symptom tracking, contact tracing, assistance with health care visits, and projection of spread and mortality (2-9). We aim to review and critically assess currently available mobile and web-based applications used in the fight against COVID-19 pandemic. Our goal is to use this information to support the development of the application created by the Larkin Health System: Hispanovida.com. We propose Editorial