差分算子的快速分解算法

IF 0.4 Q4 MATHEMATICS, APPLIED
Yi Zhou, M. V. Hoeij
{"title":"差分算子的快速分解算法","authors":"Yi Zhou, M. V. Hoeij","doi":"10.1145/3377006.3377023","DOIUrl":null,"url":null,"abstract":"Beke (1894) gave an algorithm that factors any differential operator and that algorithm can be used for difference operators as well. Bronstein improved Beke’s algorithm (see [2]). To find an order-m right-hand factor of an order-n operator using Beke-Bronstein’s algorithm, we need to create a difference system of order N = ( n m ) and solve that system. Experiments show that this is practical for n ≤ 8, or n = 9 if m ≤ 3, but beyond that N becomes too large. Our goal is a new method to find factors without increasing the order.","PeriodicalId":41965,"journal":{"name":"ACM Communications in Computer Algebra","volume":"53 1","pages":"150 - 152"},"PeriodicalIF":0.4000,"publicationDate":"2019-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1145/3377006.3377023","citationCount":"1","resultStr":"{\"title\":\"Fast algorithm for factoring difference operators\",\"authors\":\"Yi Zhou, M. V. Hoeij\",\"doi\":\"10.1145/3377006.3377023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Beke (1894) gave an algorithm that factors any differential operator and that algorithm can be used for difference operators as well. Bronstein improved Beke’s algorithm (see [2]). To find an order-m right-hand factor of an order-n operator using Beke-Bronstein’s algorithm, we need to create a difference system of order N = ( n m ) and solve that system. Experiments show that this is practical for n ≤ 8, or n = 9 if m ≤ 3, but beyond that N becomes too large. Our goal is a new method to find factors without increasing the order.\",\"PeriodicalId\":41965,\"journal\":{\"name\":\"ACM Communications in Computer Algebra\",\"volume\":\"53 1\",\"pages\":\"150 - 152\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1145/3377006.3377023\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Communications in Computer Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3377006.3377023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Communications in Computer Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3377006.3377023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

Beke(1894)给出了一种可以分解任何微分算子的算法,该算法也可以用于差分算子。Bronstein改进了Beke的算法(见[2])。为了使用Beke-Bronstein算法找到o (N)算子的o (m)右因子,我们需要创建一个N = (N m)阶的差分系统并求解该系统。实验表明,当n≤8时这是可行的,当m≤3时n = 9,但超过这个n就太大了。我们的目标是找到一种不增加阶数的新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast algorithm for factoring difference operators
Beke (1894) gave an algorithm that factors any differential operator and that algorithm can be used for difference operators as well. Bronstein improved Beke’s algorithm (see [2]). To find an order-m right-hand factor of an order-n operator using Beke-Bronstein’s algorithm, we need to create a difference system of order N = ( n m ) and solve that system. Experiments show that this is practical for n ≤ 8, or n = 9 if m ≤ 3, but beyond that N becomes too large. Our goal is a new method to find factors without increasing the order.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信