Yong Hu, Lei Li, Yin Yu, Haishui Huang, B. Uygun, M. Yarmush
{"title":"基于rna的dCas9-VP64系统提高哺乳动物细胞低温保存活力","authors":"Yong Hu, Lei Li, Yin Yu, Haishui Huang, B. Uygun, M. Yarmush","doi":"10.1142/S1793984418500046","DOIUrl":null,"url":null,"abstract":"Regenerative therapies require availability of an abundant healthy cell source which can be achieved by efficient cryopreservation techniques. Here, we established a novel approach for improved cell cryopreservation using an mRNA-based dCas9-VP64 gene activation system for transient, yet highly efficient expression of epigenetic related genes in mammalian cells for repression of metabolic activity. Before freezing, mammalian cells were treated by dCas9-VP64-modified mRNA and guide RNAs for upregulation of histone deacetylase (HDAC), DNA methyltransferase (DNMT) and transcriptional co-repressor Sin3A genes. Cell viability, karyotype, pluripotency, and other cell specific functions were analyzed during post-thaw culture. Using conventional cryopreservation protocols, we found improvement of viability in dCas9-VP64 pretreated cells ([Formula: see text]) compared to untreated cells. Combined with dCas9-VP64 system, a reduced amount of cryoprotectant (5% DMSO) did not negatively affect the post-thaw viability. Co-delivering chemically modified dCas9-VP64 mRNA with gRNAs is an efficient gene delivery method compared to DNA-based strategies, without the associated safety concerns. This approach is a simple, yet effective way to accelerate a wide array of cellular research and translational medical applications.","PeriodicalId":44929,"journal":{"name":"Nano Life","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793984418500046","citationCount":"2","resultStr":"{\"title\":\"RNA-Based dCas9–VP64 System Improves the Viability of Cryopreserved Mammalian Cells\",\"authors\":\"Yong Hu, Lei Li, Yin Yu, Haishui Huang, B. Uygun, M. Yarmush\",\"doi\":\"10.1142/S1793984418500046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Regenerative therapies require availability of an abundant healthy cell source which can be achieved by efficient cryopreservation techniques. Here, we established a novel approach for improved cell cryopreservation using an mRNA-based dCas9-VP64 gene activation system for transient, yet highly efficient expression of epigenetic related genes in mammalian cells for repression of metabolic activity. Before freezing, mammalian cells were treated by dCas9-VP64-modified mRNA and guide RNAs for upregulation of histone deacetylase (HDAC), DNA methyltransferase (DNMT) and transcriptional co-repressor Sin3A genes. Cell viability, karyotype, pluripotency, and other cell specific functions were analyzed during post-thaw culture. Using conventional cryopreservation protocols, we found improvement of viability in dCas9-VP64 pretreated cells ([Formula: see text]) compared to untreated cells. Combined with dCas9-VP64 system, a reduced amount of cryoprotectant (5% DMSO) did not negatively affect the post-thaw viability. Co-delivering chemically modified dCas9-VP64 mRNA with gRNAs is an efficient gene delivery method compared to DNA-based strategies, without the associated safety concerns. This approach is a simple, yet effective way to accelerate a wide array of cellular research and translational medical applications.\",\"PeriodicalId\":44929,\"journal\":{\"name\":\"Nano Life\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S1793984418500046\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Life\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1793984418500046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Life","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1793984418500046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
RNA-Based dCas9–VP64 System Improves the Viability of Cryopreserved Mammalian Cells
Regenerative therapies require availability of an abundant healthy cell source which can be achieved by efficient cryopreservation techniques. Here, we established a novel approach for improved cell cryopreservation using an mRNA-based dCas9-VP64 gene activation system for transient, yet highly efficient expression of epigenetic related genes in mammalian cells for repression of metabolic activity. Before freezing, mammalian cells were treated by dCas9-VP64-modified mRNA and guide RNAs for upregulation of histone deacetylase (HDAC), DNA methyltransferase (DNMT) and transcriptional co-repressor Sin3A genes. Cell viability, karyotype, pluripotency, and other cell specific functions were analyzed during post-thaw culture. Using conventional cryopreservation protocols, we found improvement of viability in dCas9-VP64 pretreated cells ([Formula: see text]) compared to untreated cells. Combined with dCas9-VP64 system, a reduced amount of cryoprotectant (5% DMSO) did not negatively affect the post-thaw viability. Co-delivering chemically modified dCas9-VP64 mRNA with gRNAs is an efficient gene delivery method compared to DNA-based strategies, without the associated safety concerns. This approach is a simple, yet effective way to accelerate a wide array of cellular research and translational medical applications.