轴流式二氧化碳涡轮机叶片冷却挡板拓扑结构的研制

Q3 Engineering
I. Komarov
{"title":"轴流式二氧化碳涡轮机叶片冷却挡板拓扑结构的研制","authors":"I. Komarov","doi":"10.31489/2022no2/48-57","DOIUrl":null,"url":null,"abstract":"Currently, there is an increase in average annual temperature and climate change across the various continents. Carbon dioxide emissions from energy facilities contributed to this condition. Implementation of oxy-fuel cycles is a promising solution for reducing carbon dioxide emissions from the energy sector. To date, the most efficient oxy-fuel cycle is the Allam cycle. In this cycle supercritical carbon dioxide acts as a working fluid of the cycle, wherein СО2’s temperature upstream of the turbine is 1,150 °С and the pressure is 30 MPa. Due to the high temperature of the working fluid, it is necessary to cool first stages of the carbon dioxide turbine. The feature of considered cooling system in this turbine is that carbon dioxide being used as a refrigerant too. This paper investigated two topologies of convective cooling systems in the carbon dioxide turbine’s nozzle blade as well as considers an option for increasing the intensity of heatexchange through the use of helical ribbing in the cylindrical cooling baffle. Numerical simulation involving the ANSYS software package was performed for two topologies of the cooling baffles arrangement in the nozzle blade body: configuration 1 -with 17 baffles of 1 mm diameter, configuration 2 -with three baffles of the blade profile shape. Configuration 1 proved to be more efficient: the Nusselt number has a value of 117, and average value of the heat transfer coefficient on the refrigerant side is 6,413 W/m2∙K. The effect of using helical ribbing in the cooling cylindrical baffle of the blade under study was investigated, which enabled to reduce the metal temperature by 54 °С on average and doubled the heat transfer coefficient.","PeriodicalId":11789,"journal":{"name":"Eurasian Physical Technical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"DEVELOPMENT AND RESEARCH OF THE TOPOLOGY OF COOLING BAFFLES FOR BLADES OF THE AXIAL CARBON DIOXIDE TURBINES\",\"authors\":\"I. Komarov\",\"doi\":\"10.31489/2022no2/48-57\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, there is an increase in average annual temperature and climate change across the various continents. Carbon dioxide emissions from energy facilities contributed to this condition. Implementation of oxy-fuel cycles is a promising solution for reducing carbon dioxide emissions from the energy sector. To date, the most efficient oxy-fuel cycle is the Allam cycle. In this cycle supercritical carbon dioxide acts as a working fluid of the cycle, wherein СО2’s temperature upstream of the turbine is 1,150 °С and the pressure is 30 MPa. Due to the high temperature of the working fluid, it is necessary to cool first stages of the carbon dioxide turbine. The feature of considered cooling system in this turbine is that carbon dioxide being used as a refrigerant too. This paper investigated two topologies of convective cooling systems in the carbon dioxide turbine’s nozzle blade as well as considers an option for increasing the intensity of heatexchange through the use of helical ribbing in the cylindrical cooling baffle. Numerical simulation involving the ANSYS software package was performed for two topologies of the cooling baffles arrangement in the nozzle blade body: configuration 1 -with 17 baffles of 1 mm diameter, configuration 2 -with three baffles of the blade profile shape. Configuration 1 proved to be more efficient: the Nusselt number has a value of 117, and average value of the heat transfer coefficient on the refrigerant side is 6,413 W/m2∙K. The effect of using helical ribbing in the cooling cylindrical baffle of the blade under study was investigated, which enabled to reduce the metal temperature by 54 °С on average and doubled the heat transfer coefficient.\",\"PeriodicalId\":11789,\"journal\":{\"name\":\"Eurasian Physical Technical Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Physical Technical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31489/2022no2/48-57\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Physical Technical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31489/2022no2/48-57","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

目前,各大洲的年平均气温和气候变化都在增加。能源设施的二氧化碳排放是造成这种情况的原因之一。实施氧燃料循环是减少能源部门二氧化碳排放的一个有希望的解决方案。迄今为止,最有效的氧-燃料循环是Allam循环。在这个循环中,超临界二氧化碳作为循环的工作流体,其中СО2涡轮上游温度为1150°С,压力为30 MPa。由于工作流体的高温,有必要对二氧化碳涡轮的一级进行冷却。该涡轮机考虑的冷却系统的特点是二氧化碳也被用作制冷剂。本文研究了二氧化碳涡轮喷嘴叶片对流冷却系统的两种拓扑结构,并考虑了通过在圆柱形冷却挡板中使用螺旋肋来增加热交换强度的一种选择。利用ANSYS软件对喷嘴叶身冷却挡板布置的两种拓扑结构进行了数值模拟:构型1为17块直径为1mm的挡板,构型2为3块叶型形状的挡板。配置1的效率更高,努塞尔数为117,制冷剂侧换热系数平均值为6413 W/m2∙K。研究了在所研究的叶片冷却圆柱挡板中使用螺旋肋的效果,使金属温度平均降低54°С,传热系数提高一倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DEVELOPMENT AND RESEARCH OF THE TOPOLOGY OF COOLING BAFFLES FOR BLADES OF THE AXIAL CARBON DIOXIDE TURBINES
Currently, there is an increase in average annual temperature and climate change across the various continents. Carbon dioxide emissions from energy facilities contributed to this condition. Implementation of oxy-fuel cycles is a promising solution for reducing carbon dioxide emissions from the energy sector. To date, the most efficient oxy-fuel cycle is the Allam cycle. In this cycle supercritical carbon dioxide acts as a working fluid of the cycle, wherein СО2’s temperature upstream of the turbine is 1,150 °С and the pressure is 30 MPa. Due to the high temperature of the working fluid, it is necessary to cool first stages of the carbon dioxide turbine. The feature of considered cooling system in this turbine is that carbon dioxide being used as a refrigerant too. This paper investigated two topologies of convective cooling systems in the carbon dioxide turbine’s nozzle blade as well as considers an option for increasing the intensity of heatexchange through the use of helical ribbing in the cylindrical cooling baffle. Numerical simulation involving the ANSYS software package was performed for two topologies of the cooling baffles arrangement in the nozzle blade body: configuration 1 -with 17 baffles of 1 mm diameter, configuration 2 -with three baffles of the blade profile shape. Configuration 1 proved to be more efficient: the Nusselt number has a value of 117, and average value of the heat transfer coefficient on the refrigerant side is 6,413 W/m2∙K. The effect of using helical ribbing in the cooling cylindrical baffle of the blade under study was investigated, which enabled to reduce the metal temperature by 54 °С on average and doubled the heat transfer coefficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信