Acacia Markov, J. Stolle, Ross Henteleff, I. Nistor, D. Pham Van Bang, E. Murphy, A. Cornett
{"title":"不规则波浪作用下斑米草和互花米草茎的变形","authors":"Acacia Markov, J. Stolle, Ross Henteleff, I. Nistor, D. Pham Van Bang, E. Murphy, A. Cornett","doi":"10.1080/21664250.2023.2195030","DOIUrl":null,"url":null,"abstract":"ABSTRACT Physical modeling studies have endeavored to quantify the influence of plant biophysical parameters and hydrodynamics on wave-vegetation interactions and coastal protection. The accuracy with which such studies have characterized stem motion is limited by the predominant use of plant surrogates, and the few saltmarsh species considered in live vegetation studies. To address this, prototype-scale experiments were conducted in the outdoor Large Wave Canal of the Institut National de la Recherche Scientifique, Québec, in collaboration with the University of Ottawa and the National Research Council Canada, allowing novel characterization of live vegetation deformation under wave action. Two saltmarsh species were investigated (Spartina alterniflora, Spartina patens) under various irregular wave conditions (0.03 m< H s <0.28 m, T s 2.5, 10 s). Stem deformation was characterized using submerged cameras and bending angle tracking, coupled with wave height and velocity measurements. Significant differences in stem flexibility were observed between species, with S. alterniflora exhibiting more rigid stems (EI alterniflora =0.051 Nm2) than S. patens (EI patens =0.0015 Nm2; t-test; p<0.05). The two species consequexhibited different bending angles under similar hydrodynamic conditions, expected to influence their relative coastal protection capacity. These findings provide critical insight into the design of marsh construction or restoration for coastal protection.","PeriodicalId":50673,"journal":{"name":"Coastal Engineering Journal","volume":"65 1","pages":"325 - 346"},"PeriodicalIF":1.9000,"publicationDate":"2023-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deformation of Spartina patens and Spartina alterniflora stems under irregular wave action\",\"authors\":\"Acacia Markov, J. Stolle, Ross Henteleff, I. Nistor, D. Pham Van Bang, E. Murphy, A. Cornett\",\"doi\":\"10.1080/21664250.2023.2195030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Physical modeling studies have endeavored to quantify the influence of plant biophysical parameters and hydrodynamics on wave-vegetation interactions and coastal protection. The accuracy with which such studies have characterized stem motion is limited by the predominant use of plant surrogates, and the few saltmarsh species considered in live vegetation studies. To address this, prototype-scale experiments were conducted in the outdoor Large Wave Canal of the Institut National de la Recherche Scientifique, Québec, in collaboration with the University of Ottawa and the National Research Council Canada, allowing novel characterization of live vegetation deformation under wave action. Two saltmarsh species were investigated (Spartina alterniflora, Spartina patens) under various irregular wave conditions (0.03 m< H s <0.28 m, T s 2.5, 10 s). Stem deformation was characterized using submerged cameras and bending angle tracking, coupled with wave height and velocity measurements. Significant differences in stem flexibility were observed between species, with S. alterniflora exhibiting more rigid stems (EI alterniflora =0.051 Nm2) than S. patens (EI patens =0.0015 Nm2; t-test; p<0.05). The two species consequexhibited different bending angles under similar hydrodynamic conditions, expected to influence their relative coastal protection capacity. These findings provide critical insight into the design of marsh construction or restoration for coastal protection.\",\"PeriodicalId\":50673,\"journal\":{\"name\":\"Coastal Engineering Journal\",\"volume\":\"65 1\",\"pages\":\"325 - 346\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-03-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Coastal Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/21664250.2023.2195030\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21664250.2023.2195030","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Deformation of Spartina patens and Spartina alterniflora stems under irregular wave action
ABSTRACT Physical modeling studies have endeavored to quantify the influence of plant biophysical parameters and hydrodynamics on wave-vegetation interactions and coastal protection. The accuracy with which such studies have characterized stem motion is limited by the predominant use of plant surrogates, and the few saltmarsh species considered in live vegetation studies. To address this, prototype-scale experiments were conducted in the outdoor Large Wave Canal of the Institut National de la Recherche Scientifique, Québec, in collaboration with the University of Ottawa and the National Research Council Canada, allowing novel characterization of live vegetation deformation under wave action. Two saltmarsh species were investigated (Spartina alterniflora, Spartina patens) under various irregular wave conditions (0.03 m< H s <0.28 m, T s 2.5, 10 s). Stem deformation was characterized using submerged cameras and bending angle tracking, coupled with wave height and velocity measurements. Significant differences in stem flexibility were observed between species, with S. alterniflora exhibiting more rigid stems (EI alterniflora =0.051 Nm2) than S. patens (EI patens =0.0015 Nm2; t-test; p<0.05). The two species consequexhibited different bending angles under similar hydrodynamic conditions, expected to influence their relative coastal protection capacity. These findings provide critical insight into the design of marsh construction or restoration for coastal protection.
期刊介绍:
Coastal Engineering Journal is a peer-reviewed medium for the publication of research achievements and engineering practices in the fields of coastal, harbor and offshore engineering. The CEJ editors welcome original papers and comprehensive reviews on waves and currents, sediment motion and morphodynamics, as well as on structures and facilities. Reports on conceptual developments and predictive methods of environmental processes are also published. Topics also include hard and soft technologies related to coastal zone development, shore protection, and prevention or mitigation of coastal disasters. The journal is intended to cover not only fundamental studies on analytical models, numerical computation and laboratory experiments, but also results of field measurements and case studies of real projects.