$[\ mathm {IA}_n,\ mathm {IA}_n]$和Johnson核的有效有限生成

Pub Date : 2020-10-19 DOI:10.4171/GGD/727
M. Ershov, Daniel Franz
{"title":"$[\\ mathm {IA}_n,\\ mathm {IA}_n]$和Johnson核的有效有限生成","authors":"M. Ershov, Daniel Franz","doi":"10.4171/GGD/727","DOIUrl":null,"url":null,"abstract":"Let $G_n$ denote either $Aut(F_n)$, the automorphism group of a free group of rank $n$, or $Mod(\\Sigma_n^1)$, the mapping class group of an orientable surface of genus $n$ with $1$ boundary component. In both cases $G_n$ admits a natural filtration $\\{G_n(k)\\}_{k=1}^{\\infty}$ called the Johnson filtration. The first terms of this filtration $G_n(1)$ are the subgroup of $IA$-automorphisms and the Torelli subgroup, respectively. It was recently proved for both families of groups that for each $k$, the $k^{\\rm th}$ term $G_n(k)$ is finitely generated when $n>>k$; however, no information about finite generating sets was known for $k>1$. The main goal of this paper is to construct an explicit finite generating set for $[IA_n,IA_n]$, the second term of the Johnson filtration of $Aut(F_n)$, and an almost explicit finite generating set for the Johnson kernel, the second term of the Johnson filtration of $Mod(\\Sigma_n^1)$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective finite generation for $[\\\\mathrm{ IA}_n,\\\\mathrm{ IA}_n]$ and the Johnson kernel\",\"authors\":\"M. Ershov, Daniel Franz\",\"doi\":\"10.4171/GGD/727\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $G_n$ denote either $Aut(F_n)$, the automorphism group of a free group of rank $n$, or $Mod(\\\\Sigma_n^1)$, the mapping class group of an orientable surface of genus $n$ with $1$ boundary component. In both cases $G_n$ admits a natural filtration $\\\\{G_n(k)\\\\}_{k=1}^{\\\\infty}$ called the Johnson filtration. The first terms of this filtration $G_n(1)$ are the subgroup of $IA$-automorphisms and the Torelli subgroup, respectively. It was recently proved for both families of groups that for each $k$, the $k^{\\\\rm th}$ term $G_n(k)$ is finitely generated when $n>>k$; however, no information about finite generating sets was known for $k>1$. The main goal of this paper is to construct an explicit finite generating set for $[IA_n,IA_n]$, the second term of the Johnson filtration of $Aut(F_n)$, and an almost explicit finite generating set for the Johnson kernel, the second term of the Johnson filtration of $Mod(\\\\Sigma_n^1)$.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/GGD/727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/GGD/727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$G_n$表示$Aut(F_n)$,秩为$n$的自由群的自同构群,或$Mod(\Sigma\n^1)$,亏格为$n$$的具有$1$边界分量的可定向曲面的映射子群。在这两种情况下$G_n$都允许称为Johnson过滤的自然过滤$\{G_n(k)\}_{k=1}^{infty}$。这个过滤的第一项$G_n(1)$分别是$IA$自同构的子群和Torelli子群。最近对两个群族都证明了,对于每个$k$,当$n>>k$时,$k^{\rmth}$项$G_n(k)$是有限生成的;然而,对于$k>1$,没有关于有限生成集的信息是已知的。本文的主要目标是为$[A_n,IA_n]$构造一个显式有限生成集,这是$Aut(F_n)$的Johnson过滤的第二项,为Johnson核构造一个几乎显式的有限生成集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Effective finite generation for $[\mathrm{ IA}_n,\mathrm{ IA}_n]$ and the Johnson kernel
Let $G_n$ denote either $Aut(F_n)$, the automorphism group of a free group of rank $n$, or $Mod(\Sigma_n^1)$, the mapping class group of an orientable surface of genus $n$ with $1$ boundary component. In both cases $G_n$ admits a natural filtration $\{G_n(k)\}_{k=1}^{\infty}$ called the Johnson filtration. The first terms of this filtration $G_n(1)$ are the subgroup of $IA$-automorphisms and the Torelli subgroup, respectively. It was recently proved for both families of groups that for each $k$, the $k^{\rm th}$ term $G_n(k)$ is finitely generated when $n>>k$; however, no information about finite generating sets was known for $k>1$. The main goal of this paper is to construct an explicit finite generating set for $[IA_n,IA_n]$, the second term of the Johnson filtration of $Aut(F_n)$, and an almost explicit finite generating set for the Johnson kernel, the second term of the Johnson filtration of $Mod(\Sigma_n^1)$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信