Wigner矩阵的泛函中心极限定理

IF 1.4 2区 数学 Q2 STATISTICS & PROBABILITY
Giorgio Cipolloni, L'aszl'o ErdHos, Dominik Schroder
{"title":"Wigner矩阵的泛函中心极限定理","authors":"Giorgio Cipolloni, L'aszl'o ErdHos, Dominik Schroder","doi":"10.1214/22-aap1820","DOIUrl":null,"url":null,"abstract":"We consider the fluctuations of regular functions $f$ of a Wigner matrix $W$ viewed as an entire matrix $f(W)$. Going beyond the well studied tracial mode, $\\mathrm{Tr}[f(W)]$, which is equivalent to the customary linear statistics of eigenvalues, we show that $\\mathrm{Tr}[f(W)]$ is asymptotically normal for any non-trivial bounded deterministic matrix $A$. We identify three different and asymptotically independent modes of this fluctuation, corresponding to the tracial part, the traceless diagonal part and the off-diagonal part of $f(W)$ in the entire mesoscopic regime, where we find that the off-diagonal modes fluctuate on a much smaller scale than the tracial mode. In addition, we determine the fluctuations in the Eigenstate Thermalisation Hypothesis [Deutsch 1991], i.e. prove that the eigenfunction overlaps with any deterministic matrix are asymptotically Gaussian after a small spectral averaging. In particular, in the macroscopic regime our result generalises [Lytova 2013] to complex $W$ and to all crossover ensembles in between. The main technical inputs are the recent multi-resolvent local laws with traceless deterministic matrices from the companion paper [Cipolloni, Erd\\H{o}s, Schr\\\"oder 2020].","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Functional central limit theorems for Wigner matrices\",\"authors\":\"Giorgio Cipolloni, L'aszl'o ErdHos, Dominik Schroder\",\"doi\":\"10.1214/22-aap1820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the fluctuations of regular functions $f$ of a Wigner matrix $W$ viewed as an entire matrix $f(W)$. Going beyond the well studied tracial mode, $\\\\mathrm{Tr}[f(W)]$, which is equivalent to the customary linear statistics of eigenvalues, we show that $\\\\mathrm{Tr}[f(W)]$ is asymptotically normal for any non-trivial bounded deterministic matrix $A$. We identify three different and asymptotically independent modes of this fluctuation, corresponding to the tracial part, the traceless diagonal part and the off-diagonal part of $f(W)$ in the entire mesoscopic regime, where we find that the off-diagonal modes fluctuate on a much smaller scale than the tracial mode. In addition, we determine the fluctuations in the Eigenstate Thermalisation Hypothesis [Deutsch 1991], i.e. prove that the eigenfunction overlaps with any deterministic matrix are asymptotically Gaussian after a small spectral averaging. In particular, in the macroscopic regime our result generalises [Lytova 2013] to complex $W$ and to all crossover ensembles in between. The main technical inputs are the recent multi-resolvent local laws with traceless deterministic matrices from the companion paper [Cipolloni, Erd\\\\H{o}s, Schr\\\\\\\"oder 2020].\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1820\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1820","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 14

摘要

我们考虑Wigner矩阵$W$的正则函数$f$的波动,将其视为整个矩阵$f(W)$。超越了研究得很好的迹模$\mathrm{Tr}[f(W)]$,它等价于特征值的常规线性统计,我们证明了$\mathrm{Tr}/f(W)]$对于任何非平凡有界确定性矩阵$A$是渐近正态的。我们确定了这种波动的三种不同且渐近独立的模式,对应于整个介观区域中$f(W)$的迹部分、无迹对角部分和非对角部分,其中我们发现非对角模式的波动范围比迹模式小得多。此外,我们确定了本征态热假设[Deusch 1991]中的波动,即证明本征函数与任何确定性矩阵的重叠在小的谱平均后是渐近高斯的。特别是,在宏观制度中,我们的结果将[Lytova 2013]推广到复杂的$W$和介于两者之间的所有交叉系综。主要的技术输入是伴随论文[Cipolloni,Erd\H中最近提出的具有无迹确定性矩阵的多解局部律{o}s,Schr“oder 2020]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Functional central limit theorems for Wigner matrices
We consider the fluctuations of regular functions $f$ of a Wigner matrix $W$ viewed as an entire matrix $f(W)$. Going beyond the well studied tracial mode, $\mathrm{Tr}[f(W)]$, which is equivalent to the customary linear statistics of eigenvalues, we show that $\mathrm{Tr}[f(W)]$ is asymptotically normal for any non-trivial bounded deterministic matrix $A$. We identify three different and asymptotically independent modes of this fluctuation, corresponding to the tracial part, the traceless diagonal part and the off-diagonal part of $f(W)$ in the entire mesoscopic regime, where we find that the off-diagonal modes fluctuate on a much smaller scale than the tracial mode. In addition, we determine the fluctuations in the Eigenstate Thermalisation Hypothesis [Deutsch 1991], i.e. prove that the eigenfunction overlaps with any deterministic matrix are asymptotically Gaussian after a small spectral averaging. In particular, in the macroscopic regime our result generalises [Lytova 2013] to complex $W$ and to all crossover ensembles in between. The main technical inputs are the recent multi-resolvent local laws with traceless deterministic matrices from the companion paper [Cipolloni, Erd\H{o}s, Schr\"oder 2020].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Applied Probability
Annals of Applied Probability 数学-统计学与概率论
CiteScore
2.70
自引率
5.60%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信