Giorgio Cipolloni, L'aszl'o ErdHos, Dominik Schroder
{"title":"Wigner矩阵的泛函中心极限定理","authors":"Giorgio Cipolloni, L'aszl'o ErdHos, Dominik Schroder","doi":"10.1214/22-aap1820","DOIUrl":null,"url":null,"abstract":"We consider the fluctuations of regular functions $f$ of a Wigner matrix $W$ viewed as an entire matrix $f(W)$. Going beyond the well studied tracial mode, $\\mathrm{Tr}[f(W)]$, which is equivalent to the customary linear statistics of eigenvalues, we show that $\\mathrm{Tr}[f(W)]$ is asymptotically normal for any non-trivial bounded deterministic matrix $A$. We identify three different and asymptotically independent modes of this fluctuation, corresponding to the tracial part, the traceless diagonal part and the off-diagonal part of $f(W)$ in the entire mesoscopic regime, where we find that the off-diagonal modes fluctuate on a much smaller scale than the tracial mode. In addition, we determine the fluctuations in the Eigenstate Thermalisation Hypothesis [Deutsch 1991], i.e. prove that the eigenfunction overlaps with any deterministic matrix are asymptotically Gaussian after a small spectral averaging. In particular, in the macroscopic regime our result generalises [Lytova 2013] to complex $W$ and to all crossover ensembles in between. The main technical inputs are the recent multi-resolvent local laws with traceless deterministic matrices from the companion paper [Cipolloni, Erd\\H{o}s, Schr\\\"oder 2020].","PeriodicalId":50979,"journal":{"name":"Annals of Applied Probability","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Functional central limit theorems for Wigner matrices\",\"authors\":\"Giorgio Cipolloni, L'aszl'o ErdHos, Dominik Schroder\",\"doi\":\"10.1214/22-aap1820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the fluctuations of regular functions $f$ of a Wigner matrix $W$ viewed as an entire matrix $f(W)$. Going beyond the well studied tracial mode, $\\\\mathrm{Tr}[f(W)]$, which is equivalent to the customary linear statistics of eigenvalues, we show that $\\\\mathrm{Tr}[f(W)]$ is asymptotically normal for any non-trivial bounded deterministic matrix $A$. We identify three different and asymptotically independent modes of this fluctuation, corresponding to the tracial part, the traceless diagonal part and the off-diagonal part of $f(W)$ in the entire mesoscopic regime, where we find that the off-diagonal modes fluctuate on a much smaller scale than the tracial mode. In addition, we determine the fluctuations in the Eigenstate Thermalisation Hypothesis [Deutsch 1991], i.e. prove that the eigenfunction overlaps with any deterministic matrix are asymptotically Gaussian after a small spectral averaging. In particular, in the macroscopic regime our result generalises [Lytova 2013] to complex $W$ and to all crossover ensembles in between. The main technical inputs are the recent multi-resolvent local laws with traceless deterministic matrices from the companion paper [Cipolloni, Erd\\\\H{o}s, Schr\\\\\\\"oder 2020].\",\"PeriodicalId\":50979,\"journal\":{\"name\":\"Annals of Applied Probability\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/22-aap1820\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-aap1820","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Functional central limit theorems for Wigner matrices
We consider the fluctuations of regular functions $f$ of a Wigner matrix $W$ viewed as an entire matrix $f(W)$. Going beyond the well studied tracial mode, $\mathrm{Tr}[f(W)]$, which is equivalent to the customary linear statistics of eigenvalues, we show that $\mathrm{Tr}[f(W)]$ is asymptotically normal for any non-trivial bounded deterministic matrix $A$. We identify three different and asymptotically independent modes of this fluctuation, corresponding to the tracial part, the traceless diagonal part and the off-diagonal part of $f(W)$ in the entire mesoscopic regime, where we find that the off-diagonal modes fluctuate on a much smaller scale than the tracial mode. In addition, we determine the fluctuations in the Eigenstate Thermalisation Hypothesis [Deutsch 1991], i.e. prove that the eigenfunction overlaps with any deterministic matrix are asymptotically Gaussian after a small spectral averaging. In particular, in the macroscopic regime our result generalises [Lytova 2013] to complex $W$ and to all crossover ensembles in between. The main technical inputs are the recent multi-resolvent local laws with traceless deterministic matrices from the companion paper [Cipolloni, Erd\H{o}s, Schr\"oder 2020].
期刊介绍:
The Annals of Applied Probability aims to publish research of the highest quality reflecting the varied facets of contemporary Applied Probability. Primary emphasis is placed on importance and originality.