{"title":"伏安法在生物医学中的应用——酶伏安法的最新进展","authors":"R. Gulaboski, V. Mirčeski","doi":"10.20450/mjcce.2020.2152","DOIUrl":null,"url":null,"abstract":"Protein-film voltammetry (PFV) is considered the simplest methodology to study the electrochemistry of lipophilic redox enzymes in an aqueous environment. By anchoring particular redox enzymes on the working electrode surface, it is possible to get an insight into the mechanism of enzyme action. The PFV methodology enables access to the relevant thermodynamic and kinetic parameters of the enzyme-electrode reaction and enzyme-substrate interactions, which is important to better understand many metabolic pathways in living systems and to delineate the physiological role of enzymes. PFV additionally provides important information which is useful for designing specific biosensors, simple medical devices and bio-fuel cells. In the current review, we focus on some recent achievements of PFV, while presenting some novel protocols that contribute to a better communication between redox enzymes and the working electrode. Insights to several new theoretical models that provide a simple strategy for studying electrode reactions of immobilized enzymes and that enable both kinetic and thermodynamic characterization of enzyme-substrate interactions are also provided. In addition, we give a short overview to several novel voltammetric techniques, derived from the perspective of square-wave voltammetry, which seem to be promising tools for application in PFV.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Application of voltammetry in biomedicine - Recent achievements in enzymatic voltammetry\",\"authors\":\"R. Gulaboski, V. Mirčeski\",\"doi\":\"10.20450/mjcce.2020.2152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Protein-film voltammetry (PFV) is considered the simplest methodology to study the electrochemistry of lipophilic redox enzymes in an aqueous environment. By anchoring particular redox enzymes on the working electrode surface, it is possible to get an insight into the mechanism of enzyme action. The PFV methodology enables access to the relevant thermodynamic and kinetic parameters of the enzyme-electrode reaction and enzyme-substrate interactions, which is important to better understand many metabolic pathways in living systems and to delineate the physiological role of enzymes. PFV additionally provides important information which is useful for designing specific biosensors, simple medical devices and bio-fuel cells. In the current review, we focus on some recent achievements of PFV, while presenting some novel protocols that contribute to a better communication between redox enzymes and the working electrode. Insights to several new theoretical models that provide a simple strategy for studying electrode reactions of immobilized enzymes and that enable both kinetic and thermodynamic characterization of enzyme-substrate interactions are also provided. In addition, we give a short overview to several novel voltammetric techniques, derived from the perspective of square-wave voltammetry, which seem to be promising tools for application in PFV.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.20450/mjcce.2020.2152\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.20450/mjcce.2020.2152","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Application of voltammetry in biomedicine - Recent achievements in enzymatic voltammetry
Protein-film voltammetry (PFV) is considered the simplest methodology to study the electrochemistry of lipophilic redox enzymes in an aqueous environment. By anchoring particular redox enzymes on the working electrode surface, it is possible to get an insight into the mechanism of enzyme action. The PFV methodology enables access to the relevant thermodynamic and kinetic parameters of the enzyme-electrode reaction and enzyme-substrate interactions, which is important to better understand many metabolic pathways in living systems and to delineate the physiological role of enzymes. PFV additionally provides important information which is useful for designing specific biosensors, simple medical devices and bio-fuel cells. In the current review, we focus on some recent achievements of PFV, while presenting some novel protocols that contribute to a better communication between redox enzymes and the working electrode. Insights to several new theoretical models that provide a simple strategy for studying electrode reactions of immobilized enzymes and that enable both kinetic and thermodynamic characterization of enzyme-substrate interactions are also provided. In addition, we give a short overview to several novel voltammetric techniques, derived from the perspective of square-wave voltammetry, which seem to be promising tools for application in PFV.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.