无限长垂直多孔板非定常辐射MHD边界层滑移流的扩散热源效应

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
V. Malapati, D. Lakshmi
{"title":"无限长垂直多孔板非定常辐射MHD边界层滑移流的扩散热源效应","authors":"V. Malapati, D. Lakshmi","doi":"10.3329/jname.v18i1.33024","DOIUrl":null,"url":null,"abstract":"The heat and mass transfer characteristics of the nonlinear, unsteady, radiative MHD boundary layer slip flow of a chemically reacting fluid past an infinite vertical porous plate are taken into account in this study. The effect of physical parameters are accounted for two distinct types of thermal boundary conditions namely prescribed uniform wall temperature thermal boundary condition and prescribed heat flux thermal boundary condition. Exact solution of the governing equations for the fluid velocity, temperature and concentration are obtained by using two term perturbation technique subject to physically appropriate boundary conditions. The expressions of skin friction, Nusselt number and Sherwood number are also derived. The numerical values of fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. Results are compared with the literature in the limiting case. ","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Diffusion-thermo and heat source effects on the unsteady radiative MHD boundary layer slip flow past an infinite vertical porous plate\",\"authors\":\"V. Malapati, D. Lakshmi\",\"doi\":\"10.3329/jname.v18i1.33024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The heat and mass transfer characteristics of the nonlinear, unsteady, radiative MHD boundary layer slip flow of a chemically reacting fluid past an infinite vertical porous plate are taken into account in this study. The effect of physical parameters are accounted for two distinct types of thermal boundary conditions namely prescribed uniform wall temperature thermal boundary condition and prescribed heat flux thermal boundary condition. Exact solution of the governing equations for the fluid velocity, temperature and concentration are obtained by using two term perturbation technique subject to physically appropriate boundary conditions. The expressions of skin friction, Nusselt number and Sherwood number are also derived. The numerical values of fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. Results are compared with the literature in the limiting case. \",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3329/jname.v18i1.33024\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jname.v18i1.33024","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 5

摘要

本研究考虑了化学反应流体通过无限长垂直多孔板的非线性、非定常、辐射MHD边界层滑移流的传热传质特性。物理参数的影响考虑了两种不同类型的热边界条件,即规定的均匀壁温热边界条件和规定的热通量热边界条件。在物理上适当的边界条件下,利用二项微扰技术得到了流体速度、温度和浓度控制方程的精确解。导出了表面摩擦、努塞尔数和舍伍德数的表达式。流体速度、温度和浓度的数值以图形形式显示,而剪切应力、传热率和板处传质率的数值则以表格形式显示,用于各种相关流动参数的值。在极限情况下,将结果与文献进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Diffusion-thermo and heat source effects on the unsteady radiative MHD boundary layer slip flow past an infinite vertical porous plate
The heat and mass transfer characteristics of the nonlinear, unsteady, radiative MHD boundary layer slip flow of a chemically reacting fluid past an infinite vertical porous plate are taken into account in this study. The effect of physical parameters are accounted for two distinct types of thermal boundary conditions namely prescribed uniform wall temperature thermal boundary condition and prescribed heat flux thermal boundary condition. Exact solution of the governing equations for the fluid velocity, temperature and concentration are obtained by using two term perturbation technique subject to physically appropriate boundary conditions. The expressions of skin friction, Nusselt number and Sherwood number are also derived. The numerical values of fluid velocity, temperature and concentration are displayed graphically whereas those of shear stress, rate of heat transfer and rate of mass transfer at the plate are presented in tabular form for various values of pertinent flow parameters. Results are compared with the literature in the limiting case. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信