{"title":"和弦定理在十八世纪之交复活了","authors":"Andrea Del Centina, Alessandra Fiocca","doi":"10.1016/j.hm.2021.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is a historical account of the chords theorem, for conic sections from Apollonius to Boscovich. We comment the most significant proofs and applications, focusing on Newton's solution of the Pappus four lines problem. Newton's geometrical achievements drew L'Hospital's attention to the chords theorem as a fundamental one, and led him to search for a simple and direct proof, that he finally obtained by the method of projection. Stirling gave a very elegant algebraic proof; then Boscovich succeeded in finding an almost immediate geometrical proof, and showed how to develop the elements of conic sections starting from this theorem.</p></div>","PeriodicalId":51061,"journal":{"name":"Historia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.hm.2021.03.002","citationCount":"4","resultStr":"{\"title\":\"The chords theorem recalled to life at the turn of the eighteenth century\",\"authors\":\"Andrea Del Centina, Alessandra Fiocca\",\"doi\":\"10.1016/j.hm.2021.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is a historical account of the chords theorem, for conic sections from Apollonius to Boscovich. We comment the most significant proofs and applications, focusing on Newton's solution of the Pappus four lines problem. Newton's geometrical achievements drew L'Hospital's attention to the chords theorem as a fundamental one, and led him to search for a simple and direct proof, that he finally obtained by the method of projection. Stirling gave a very elegant algebraic proof; then Boscovich succeeded in finding an almost immediate geometrical proof, and showed how to develop the elements of conic sections starting from this theorem.</p></div>\",\"PeriodicalId\":51061,\"journal\":{\"name\":\"Historia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.hm.2021.03.002\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Historia Mathematica\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0315086021000203\",\"RegionNum\":3,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Historia Mathematica","FirstCategoryId":"98","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0315086021000203","RegionNum":3,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
The chords theorem recalled to life at the turn of the eighteenth century
This paper is a historical account of the chords theorem, for conic sections from Apollonius to Boscovich. We comment the most significant proofs and applications, focusing on Newton's solution of the Pappus four lines problem. Newton's geometrical achievements drew L'Hospital's attention to the chords theorem as a fundamental one, and led him to search for a simple and direct proof, that he finally obtained by the method of projection. Stirling gave a very elegant algebraic proof; then Boscovich succeeded in finding an almost immediate geometrical proof, and showed how to develop the elements of conic sections starting from this theorem.
期刊介绍:
Historia Mathematica publishes historical scholarship on mathematics and its development in all cultures and time periods. In particular, the journal encourages informed studies on mathematicians and their work in historical context, on the histories of institutions and organizations supportive of the mathematical endeavor, on historiographical topics in the history of mathematics, and on the interrelations between mathematical ideas, science, and the broader culture.