和弦定理在十八世纪之交复活了

IF 0.5 3区 哲学 Q3 HISTORY & PHILOSOPHY OF SCIENCE
Andrea Del Centina, Alessandra Fiocca
{"title":"和弦定理在十八世纪之交复活了","authors":"Andrea Del Centina,&nbsp;Alessandra Fiocca","doi":"10.1016/j.hm.2021.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is a historical account of the chords theorem, for conic sections from Apollonius to Boscovich. We comment the most significant proofs and applications, focusing on Newton's solution of the Pappus four lines problem. Newton's geometrical achievements drew L'Hospital's attention to the chords theorem as a fundamental one, and led him to search for a simple and direct proof, that he finally obtained by the method of projection. Stirling gave a very elegant algebraic proof; then Boscovich succeeded in finding an almost immediate geometrical proof, and showed how to develop the elements of conic sections starting from this theorem.</p></div>","PeriodicalId":51061,"journal":{"name":"Historia Mathematica","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.hm.2021.03.002","citationCount":"4","resultStr":"{\"title\":\"The chords theorem recalled to life at the turn of the eighteenth century\",\"authors\":\"Andrea Del Centina,&nbsp;Alessandra Fiocca\",\"doi\":\"10.1016/j.hm.2021.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is a historical account of the chords theorem, for conic sections from Apollonius to Boscovich. We comment the most significant proofs and applications, focusing on Newton's solution of the Pappus four lines problem. Newton's geometrical achievements drew L'Hospital's attention to the chords theorem as a fundamental one, and led him to search for a simple and direct proof, that he finally obtained by the method of projection. Stirling gave a very elegant algebraic proof; then Boscovich succeeded in finding an almost immediate geometrical proof, and showed how to develop the elements of conic sections starting from this theorem.</p></div>\",\"PeriodicalId\":51061,\"journal\":{\"name\":\"Historia Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.hm.2021.03.002\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Historia Mathematica\",\"FirstCategoryId\":\"98\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0315086021000203\",\"RegionNum\":3,\"RegionCategory\":\"哲学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HISTORY & PHILOSOPHY OF SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Historia Mathematica","FirstCategoryId":"98","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0315086021000203","RegionNum":3,"RegionCategory":"哲学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HISTORY & PHILOSOPHY OF SCIENCE","Score":null,"Total":0}
引用次数: 4

摘要

本文是关于从阿波罗尼乌斯到博斯科维奇的二次曲线的和弦定理的历史叙述。我们评论了最重要的证明和应用,重点是牛顿对帕普斯四线问题的解决。牛顿的几何成就使洛必达注意到和弦定理是一个基本定理,并引导他寻找一个简单而直接的证明,他最终通过投影的方法得到了证明。斯特林给出了一个非常优雅的代数证明;然后,博斯科维奇成功地找到了一个几乎是直接的几何证明,并展示了如何从这个定理开始发展圆锥曲线的要素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The chords theorem recalled to life at the turn of the eighteenth century

This paper is a historical account of the chords theorem, for conic sections from Apollonius to Boscovich. We comment the most significant proofs and applications, focusing on Newton's solution of the Pappus four lines problem. Newton's geometrical achievements drew L'Hospital's attention to the chords theorem as a fundamental one, and led him to search for a simple and direct proof, that he finally obtained by the method of projection. Stirling gave a very elegant algebraic proof; then Boscovich succeeded in finding an almost immediate geometrical proof, and showed how to develop the elements of conic sections starting from this theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Historia Mathematica
Historia Mathematica 数学-科学史与科学哲学
CiteScore
1.10
自引率
0.00%
发文量
29
审稿时长
72 days
期刊介绍: Historia Mathematica publishes historical scholarship on mathematics and its development in all cultures and time periods. In particular, the journal encourages informed studies on mathematicians and their work in historical context, on the histories of institutions and organizations supportive of the mathematical endeavor, on historiographical topics in the history of mathematics, and on the interrelations between mathematical ideas, science, and the broader culture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信