液态金属/聚二甲基硅氧烷多孔纤维TENG的同时蒸发和发泡

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xinghao Zhang, Jiawen Xu, Xiaomei Zhang, Guojie Chao, Qixin Cao, Tianxi Liu, Yu Liu
{"title":"液态金属/聚二甲基硅氧烷多孔纤维TENG的同时蒸发和发泡","authors":"Xinghao Zhang,&nbsp;Jiawen Xu,&nbsp;Xiaomei Zhang,&nbsp;Guojie Chao,&nbsp;Qixin Cao,&nbsp;Tianxi Liu,&nbsp;Yu Liu","doi":"10.1007/s42765-023-00314-3","DOIUrl":null,"url":null,"abstract":"<div><p>The utilization of textile-based triboelectric nanogenerators (t-TENGs) offers great potential for providing sustainable and wearable power. Nevertheless, the current designs of t-TENGs present limitations in terms of low electrical outputs and less developed, straightforward batch processing techniques. Herein, a facile bottom-up foaming-combined coaxial extrusion method is developed for the massive fabrication of liquid metal/polydimethylsiloxane (PDMS) core–shell porous fibrous TENG, which can be directly woven to form t-TENGs. Ink designs are studied for high-fidelity fibrous TENG manufacturing and porosity-controlled micropore formation. Furthermore, porous fibrous TENGs are applied to integrate different woven structures, and the electrical and mechanical performances of the t-TENGs are optimized. Compared with plain surface fibrous TENG, the porous fibrous TENG achieves a ~ fivefold improvement in the open-circuit voltage (V<sub>OC</sub>) and a ~ sevenfold improvement in the short-circuit current (I<sub>SC</sub>). These outcomes indicate that we can prepare a range of polymers for t-TENGs with enhanced output performance even though they do not demonstrate great triboelectrification. This work also demonstrates successful integration for sustainably powering miniature electronics. These results can contribute to human motion energy harvesting for wearable self-powered sensors.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"5 6","pages":"1949 - 1962"},"PeriodicalIF":17.2000,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Simultaneous Evaporation and Foaming for Batch Coaxial Extrusion of Liquid Metal/Polydimethylsiloxane Porous Fibrous TENG\",\"authors\":\"Xinghao Zhang,&nbsp;Jiawen Xu,&nbsp;Xiaomei Zhang,&nbsp;Guojie Chao,&nbsp;Qixin Cao,&nbsp;Tianxi Liu,&nbsp;Yu Liu\",\"doi\":\"10.1007/s42765-023-00314-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The utilization of textile-based triboelectric nanogenerators (t-TENGs) offers great potential for providing sustainable and wearable power. Nevertheless, the current designs of t-TENGs present limitations in terms of low electrical outputs and less developed, straightforward batch processing techniques. Herein, a facile bottom-up foaming-combined coaxial extrusion method is developed for the massive fabrication of liquid metal/polydimethylsiloxane (PDMS) core–shell porous fibrous TENG, which can be directly woven to form t-TENGs. Ink designs are studied for high-fidelity fibrous TENG manufacturing and porosity-controlled micropore formation. Furthermore, porous fibrous TENGs are applied to integrate different woven structures, and the electrical and mechanical performances of the t-TENGs are optimized. Compared with plain surface fibrous TENG, the porous fibrous TENG achieves a ~ fivefold improvement in the open-circuit voltage (V<sub>OC</sub>) and a ~ sevenfold improvement in the short-circuit current (I<sub>SC</sub>). These outcomes indicate that we can prepare a range of polymers for t-TENGs with enhanced output performance even though they do not demonstrate great triboelectrification. This work also demonstrates successful integration for sustainably powering miniature electronics. These results can contribute to human motion energy harvesting for wearable self-powered sensors.</p><h3>Graphical abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"5 6\",\"pages\":\"1949 - 1962\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2023-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-023-00314-3\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-023-00314-3","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

基于纺织品的摩擦电纳米发电机(t- teng)为提供可持续和可穿戴的电力提供了巨大的潜力。然而,目前的t- teng设计在低电输出和欠发达、直接的批量处理技术方面存在局限性。本文提出了一种简便的自下而上泡沫-同轴挤压复合方法,用于大规模制备液态金属/聚二甲基硅氧烷(PDMS)核-壳多孔纤维TENG,该方法可直接编织成t-TENG。研究了用于高保真纤维TENG制造和孔隙度控制微孔形成的油墨设计。在此基础上,将多孔纤维材料应用于不同的编织结构中,并对其电性能和力学性能进行了优化。与平面纤维型TENG相比,多孔纤维型TENG的开路电压(VOC)提高了约5倍,短路电流(ISC)提高了约7倍。这些结果表明,我们可以为t- teng制备一系列具有增强输出性能的聚合物,即使它们没有表现出很大的摩擦电气化。这项工作也证明了微型电子产品可持续供电的成功集成。这些结果有助于可穿戴自供电传感器的人体运动能量收集。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Simultaneous Evaporation and Foaming for Batch Coaxial Extrusion of Liquid Metal/Polydimethylsiloxane Porous Fibrous TENG

Simultaneous Evaporation and Foaming for Batch Coaxial Extrusion of Liquid Metal/Polydimethylsiloxane Porous Fibrous TENG

The utilization of textile-based triboelectric nanogenerators (t-TENGs) offers great potential for providing sustainable and wearable power. Nevertheless, the current designs of t-TENGs present limitations in terms of low electrical outputs and less developed, straightforward batch processing techniques. Herein, a facile bottom-up foaming-combined coaxial extrusion method is developed for the massive fabrication of liquid metal/polydimethylsiloxane (PDMS) core–shell porous fibrous TENG, which can be directly woven to form t-TENGs. Ink designs are studied for high-fidelity fibrous TENG manufacturing and porosity-controlled micropore formation. Furthermore, porous fibrous TENGs are applied to integrate different woven structures, and the electrical and mechanical performances of the t-TENGs are optimized. Compared with plain surface fibrous TENG, the porous fibrous TENG achieves a ~ fivefold improvement in the open-circuit voltage (VOC) and a ~ sevenfold improvement in the short-circuit current (ISC). These outcomes indicate that we can prepare a range of polymers for t-TENGs with enhanced output performance even though they do not demonstrate great triboelectrification. This work also demonstrates successful integration for sustainably powering miniature electronics. These results can contribute to human motion energy harvesting for wearable self-powered sensors.

Graphical abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信