通过实验室试验确定非饱和热带土壤活动区的地质力学参数

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jeferson Fernandes, A. Saab, B. Rocha, R. Rodrigues, P. Lodi, H. Giacheti
{"title":"通过实验室试验确定非饱和热带土壤活动区的地质力学参数","authors":"Jeferson Fernandes, A. Saab, B. Rocha, R. Rodrigues, P. Lodi, H. Giacheti","doi":"10.28927/sr.2022.000422","DOIUrl":null,"url":null,"abstract":"The seasonal variability of geotechnical parameters in the unsaturated zone is typically neglected in the design of geotechnical works. In most of the geotechnical projects the parameters are determined only for the saturated condition. Although it is known that this condition is the most critical to soil strength and deformability, this conservative approach may neglect a possible important contribution of the unsaturated condition, resulting in an increase in the cost of the geotechnical solution. This paper presents and discusses the site characterization of the active zone of an unsaturated sandy soil profile under different suction conditions. Laboratory tests with controlled suction (retention curves, triaxial compression with bender elements and oedometer tests) were carried out on undisturbed samples collected from 1.0 to 5.0 m depth. The results show that strength and deformability parameters are strongly affected by soil suction and are less influenced by confinement stress up to 5.0 m depth. All the investigated subsoil profile shows a collapsible behavior, more pronounced closer to the ground surface and under the effect of higher suction values. The findings highlight the importance of incorporating the suction influence in the site investigation, parameter determination, and geotechnical design for more economical, reliable, and environmentally sustainable solutions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Geomechanical parameters in the active zone of an unsaturated tropical soil site via laboratory tests\",\"authors\":\"Jeferson Fernandes, A. Saab, B. Rocha, R. Rodrigues, P. Lodi, H. Giacheti\",\"doi\":\"10.28927/sr.2022.000422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The seasonal variability of geotechnical parameters in the unsaturated zone is typically neglected in the design of geotechnical works. In most of the geotechnical projects the parameters are determined only for the saturated condition. Although it is known that this condition is the most critical to soil strength and deformability, this conservative approach may neglect a possible important contribution of the unsaturated condition, resulting in an increase in the cost of the geotechnical solution. This paper presents and discusses the site characterization of the active zone of an unsaturated sandy soil profile under different suction conditions. Laboratory tests with controlled suction (retention curves, triaxial compression with bender elements and oedometer tests) were carried out on undisturbed samples collected from 1.0 to 5.0 m depth. The results show that strength and deformability parameters are strongly affected by soil suction and are less influenced by confinement stress up to 5.0 m depth. All the investigated subsoil profile shows a collapsible behavior, more pronounced closer to the ground surface and under the effect of higher suction values. The findings highlight the importance of incorporating the suction influence in the site investigation, parameter determination, and geotechnical design for more economical, reliable, and environmentally sustainable solutions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.28927/sr.2022.000422\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28927/sr.2022.000422","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1

摘要

在岩土工程设计中,通常忽略非饱和带岩土参数的季节变化。在大多数岩土工程中,参数仅针对饱和条件确定。尽管已知这种条件对土壤强度和变形能力最为关键,但这种保守的方法可能会忽略非饱和条件可能产生的重要影响,从而增加岩土工程解决方案的成本。本文介绍并讨论了不同吸力条件下非饱和砂土剖面活动区的现场特征。在1.0至5.0 m深度采集的未扰动样品上进行了控制吸力的实验室试验(保持曲线、弯曲元件三轴压缩和固结仪试验)。结果表明,强度和变形性参数受土壤吸力的影响很大,而在5.0m深度以下受约束应力的影响较小。所有调查的底土剖面都显示出可折叠的特性,在更高吸力值的影响下,在更接近地表的地方更为明显。研究结果强调了将吸力影响纳入现场调查、参数确定和岩土工程设计的重要性,以获得更经济、可靠和环境可持续的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geomechanical parameters in the active zone of an unsaturated tropical soil site via laboratory tests
The seasonal variability of geotechnical parameters in the unsaturated zone is typically neglected in the design of geotechnical works. In most of the geotechnical projects the parameters are determined only for the saturated condition. Although it is known that this condition is the most critical to soil strength and deformability, this conservative approach may neglect a possible important contribution of the unsaturated condition, resulting in an increase in the cost of the geotechnical solution. This paper presents and discusses the site characterization of the active zone of an unsaturated sandy soil profile under different suction conditions. Laboratory tests with controlled suction (retention curves, triaxial compression with bender elements and oedometer tests) were carried out on undisturbed samples collected from 1.0 to 5.0 m depth. The results show that strength and deformability parameters are strongly affected by soil suction and are less influenced by confinement stress up to 5.0 m depth. All the investigated subsoil profile shows a collapsible behavior, more pronounced closer to the ground surface and under the effect of higher suction values. The findings highlight the importance of incorporating the suction influence in the site investigation, parameter determination, and geotechnical design for more economical, reliable, and environmentally sustainable solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信