ehrenfest - brillouin型相关连续时间随机漫步和分数阶Jacobi扩散

IF 0.4 Q4 STATISTICS & PROBABILITY
N. Leonenko, I. Papic, A. Sikorskii, N. Šuvak
{"title":"ehrenfest - brillouin型相关连续时间随机漫步和分数阶Jacobi扩散","authors":"N. Leonenko, I. Papic, A. Sikorskii, N. Šuvak","doi":"10.1090/TPMS/1086","DOIUrl":null,"url":null,"abstract":"Continuous time random walks (CTRWs) have random waiting times between particle \njumps. Based on Ehrenfest-Brillouin-type model motivated by economics, we define the correlated \nCTRW that converge to the fractional Jacobi diffusion Y (E(t)), t ≥ 0, defined as a time change of \nJacobi diffusion process Y (t) to the inverse E(t) of the standard stable subordinator. In the CTRW \nconsidered in this paper, the jumps are correlated so that in the limit the outer process Y (t) is not \na L´evy process but a diffusion process with non-independent increments. The waiting times between \njumps are selected from the domain of attraction of a stable law, so that the correlated CTRWs with \nthese waiting times converge to Y (E(t)).","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2020-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/TPMS/1086","citationCount":"1","resultStr":"{\"title\":\"Ehrenfest–Brillouin-type correlated continuous time random walk and fractional Jacobi diffusion\",\"authors\":\"N. Leonenko, I. Papic, A. Sikorskii, N. Šuvak\",\"doi\":\"10.1090/TPMS/1086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Continuous time random walks (CTRWs) have random waiting times between particle \\njumps. Based on Ehrenfest-Brillouin-type model motivated by economics, we define the correlated \\nCTRW that converge to the fractional Jacobi diffusion Y (E(t)), t ≥ 0, defined as a time change of \\nJacobi diffusion process Y (t) to the inverse E(t) of the standard stable subordinator. In the CTRW \\nconsidered in this paper, the jumps are correlated so that in the limit the outer process Y (t) is not \\na L´evy process but a diffusion process with non-independent increments. The waiting times between \\njumps are selected from the domain of attraction of a stable law, so that the correlated CTRWs with \\nthese waiting times converge to Y (E(t)).\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2020-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1090/TPMS/1086\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/TPMS/1086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/TPMS/1086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

连续时间随机漫步(ctrw)在粒子跳跃之间具有随机等待时间。基于经济学驱动的ehrenfest - brillouin型模型,我们定义了收敛于分数阶Jacobi扩散Y (E(t)), t≥0的相关CTRW,定义为Jacobi扩散过程Y (t)到标准稳定次级系统逆E(t)的时间变化。在本文考虑的CTRW中,跳跃是相关的,因此在极限情况下,外部过程Y (t)不是一个L ' evy过程,而是一个具有非独立增量的扩散过程。在一个稳定定律的吸引域中选择跳跃之间的等待时间,使与这些等待时间相关的ctrw收敛于Y (E(t))。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ehrenfest–Brillouin-type correlated continuous time random walk and fractional Jacobi diffusion
Continuous time random walks (CTRWs) have random waiting times between particle jumps. Based on Ehrenfest-Brillouin-type model motivated by economics, we define the correlated CTRW that converge to the fractional Jacobi diffusion Y (E(t)), t ≥ 0, defined as a time change of Jacobi diffusion process Y (t) to the inverse E(t) of the standard stable subordinator. In the CTRW considered in this paper, the jumps are correlated so that in the limit the outer process Y (t) is not a L´evy process but a diffusion process with non-independent increments. The waiting times between jumps are selected from the domain of attraction of a stable law, so that the correlated CTRWs with these waiting times converge to Y (E(t)).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信