BCSA原料设计:化学成分和矿物学之间的相关性

Q4 Environmental Science
Suresh Palla, Suresh Vanguri, S. Ramakrishna, S. Chaturvedi, B. Mohapatra
{"title":"BCSA原料设计:化学成分和矿物学之间的相关性","authors":"Suresh Palla, Suresh Vanguri, S. Ramakrishna, S. Chaturvedi, B. Mohapatra","doi":"10.29037/ajstd.705","DOIUrl":null,"url":null,"abstract":"The cement industry has been identified as one of the main contributors to climate change due to greenhouse gas emissions, mainly CO2. Therefore, to meet CO2 reduction targets, cement producers are working on different methods of minimizing its emission, one of which is alternative clinkers. This study assessed the impact of variations of the raw mix design, concerning the type and proportions of materials, on the formation of calcium sulphoaluminate belite-type clinkers. Various materials were used to produce raw mixes for different percentages of belite, yeeliminite, and other minerals in resultant clinkers. Computer-based theoretical mix designs were designed with different percentages of SiO2, CaO, Al2O3, Fe2O3, and SO3 and then the designed mixes were fired in a laboratory furnace at 1250oC with 20 min retention time. The resultant clinker samples were characterized with X-ray diffraction for product minerals. The quantification of minerals in every sample was carried out with Rietveld refinement. The obtained results confirmed the correlation between the mineralogy and chemical constituents in the raw mix. The C4AF percentage of the resultant clinker samples increased with an increase in Fe2O3 percentage. C4A3$ content varied with the amounts of Al2O3, SO3, and CaO. The mineral percentage of C2S in the designed mixes had a clear correlation with the constituents of SiO2 and CaO. Anhydrite percentage in the resultant minerals changed with the SO3 content in the raw mix. These results should aid in the determination of the optimum amount of chemical constituents and minerals required for the development of calcium sulphoaluminate clinker.","PeriodicalId":8479,"journal":{"name":"Asean Journal on Science and Technology for Development","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BCSA Rawmix Design: Correlation between Chemical Constituents and Mineralogy\",\"authors\":\"Suresh Palla, Suresh Vanguri, S. Ramakrishna, S. Chaturvedi, B. Mohapatra\",\"doi\":\"10.29037/ajstd.705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The cement industry has been identified as one of the main contributors to climate change due to greenhouse gas emissions, mainly CO2. Therefore, to meet CO2 reduction targets, cement producers are working on different methods of minimizing its emission, one of which is alternative clinkers. This study assessed the impact of variations of the raw mix design, concerning the type and proportions of materials, on the formation of calcium sulphoaluminate belite-type clinkers. Various materials were used to produce raw mixes for different percentages of belite, yeeliminite, and other minerals in resultant clinkers. Computer-based theoretical mix designs were designed with different percentages of SiO2, CaO, Al2O3, Fe2O3, and SO3 and then the designed mixes were fired in a laboratory furnace at 1250oC with 20 min retention time. The resultant clinker samples were characterized with X-ray diffraction for product minerals. The quantification of minerals in every sample was carried out with Rietveld refinement. The obtained results confirmed the correlation between the mineralogy and chemical constituents in the raw mix. The C4AF percentage of the resultant clinker samples increased with an increase in Fe2O3 percentage. C4A3$ content varied with the amounts of Al2O3, SO3, and CaO. The mineral percentage of C2S in the designed mixes had a clear correlation with the constituents of SiO2 and CaO. Anhydrite percentage in the resultant minerals changed with the SO3 content in the raw mix. These results should aid in the determination of the optimum amount of chemical constituents and minerals required for the development of calcium sulphoaluminate clinker.\",\"PeriodicalId\":8479,\"journal\":{\"name\":\"Asean Journal on Science and Technology for Development\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asean Journal on Science and Technology for Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29037/ajstd.705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asean Journal on Science and Technology for Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29037/ajstd.705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

摘要

由于温室气体(主要是二氧化碳)的排放,水泥行业已被确定为气候变化的主要贡献者之一。因此,为了达到二氧化碳减排目标,水泥生产商正在研究各种减少其排放的方法,其中之一是替代熟料。本研究评估了原料混合设计的变化对硫铝酸钙belite型熟料形成的影响,涉及到材料的类型和比例。不同的材料被用来生产原料混合料,在合成的熟料中有不同百分比的白橄榄石、铝矾土和其他矿物。设计了SiO2、CaO、Al2O3、Fe2O3和SO3的不同配比的计算机理论混合料,并在1250℃的实验炉中焙烧,保温时间为20 min。所得熟料样品用x射线衍射对产物矿物进行了表征。每个样品中的矿物都用里特费尔德精馏法进行定量分析。所得结果证实了原料混合物中矿物学和化学成分之间的相关性。所得熟料样品的C4AF百分比随着Fe2O3百分比的增加而增加。C4A3$的含量随Al2O3、SO3和CaO的添加量而变化。设计的混合料中C2S的矿物含量与SiO2和CaO的组分有明显的相关性。合成矿物中硬石膏的含量随原料混合物中SO3含量的变化而变化。这些结果将有助于确定开发硫铝酸钙熟料所需的化学成分和矿物质的最佳量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BCSA Rawmix Design: Correlation between Chemical Constituents and Mineralogy
The cement industry has been identified as one of the main contributors to climate change due to greenhouse gas emissions, mainly CO2. Therefore, to meet CO2 reduction targets, cement producers are working on different methods of minimizing its emission, one of which is alternative clinkers. This study assessed the impact of variations of the raw mix design, concerning the type and proportions of materials, on the formation of calcium sulphoaluminate belite-type clinkers. Various materials were used to produce raw mixes for different percentages of belite, yeeliminite, and other minerals in resultant clinkers. Computer-based theoretical mix designs were designed with different percentages of SiO2, CaO, Al2O3, Fe2O3, and SO3 and then the designed mixes were fired in a laboratory furnace at 1250oC with 20 min retention time. The resultant clinker samples were characterized with X-ray diffraction for product minerals. The quantification of minerals in every sample was carried out with Rietveld refinement. The obtained results confirmed the correlation between the mineralogy and chemical constituents in the raw mix. The C4AF percentage of the resultant clinker samples increased with an increase in Fe2O3 percentage. C4A3$ content varied with the amounts of Al2O3, SO3, and CaO. The mineral percentage of C2S in the designed mixes had a clear correlation with the constituents of SiO2 and CaO. Anhydrite percentage in the resultant minerals changed with the SO3 content in the raw mix. These results should aid in the determination of the optimum amount of chemical constituents and minerals required for the development of calcium sulphoaluminate clinker.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asean Journal on Science and Technology for Development
Asean Journal on Science and Technology for Development Environmental Science-Waste Management and Disposal
CiteScore
1.50
自引率
0.00%
发文量
10
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信