{"title":"新型飞灰跳动实验离心容器的设计与仪器","authors":"S. Madabhushi, A. Martínez, D. Wilson, B. Kutter","doi":"10.1680/jphmg.21.00044","DOIUrl":null,"url":null,"abstract":"Debris flow, landslides and material run-outs have significant environmental and economic consequences for numerous industries. High quality experimental data with controlled boundary conditions can help validate and calibrate the predictive capabilities of mechanistic and semi-empirical numerical models. A novel centrifuge container to model dewatering and run-outs induced by a rapid loss of confinement is presented. The design features a pair of vertical doors opened in-flight to simulate failure of the containing structure. Illustrative centrifuge results investigating the run-out characteristics of a fully saturated, densely deposited class-F fly ash are presented. Modified soil moisture probes to monitor the distributions and time-varying fly ash water content throughout the testing are explored. Further, successful use of depth sensing cameras to reconstruct progressive deformations of the material front at various time scales is demonstrated. Combined water content, pore pressure and deformation measurements provides insight into the material behaviour during the run-out, revealing two-time scales at which the deformations occur. However, discrepancies between water contents inferred from the dielectric measurements and electrical conductivities highlights the need for independent verification of the bulk material water content when using the modified probes. Overall, the potential of these innovative instrumentation techniques to complement traditional geotechnical instrumentation is shown.","PeriodicalId":48816,"journal":{"name":"International Journal of Physical Modelling in Geotechnics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Design and Instrumentation of a Novel Centrifuge Container for Fly Ash Run-out Experiments\",\"authors\":\"S. Madabhushi, A. Martínez, D. Wilson, B. Kutter\",\"doi\":\"10.1680/jphmg.21.00044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Debris flow, landslides and material run-outs have significant environmental and economic consequences for numerous industries. High quality experimental data with controlled boundary conditions can help validate and calibrate the predictive capabilities of mechanistic and semi-empirical numerical models. A novel centrifuge container to model dewatering and run-outs induced by a rapid loss of confinement is presented. The design features a pair of vertical doors opened in-flight to simulate failure of the containing structure. Illustrative centrifuge results investigating the run-out characteristics of a fully saturated, densely deposited class-F fly ash are presented. Modified soil moisture probes to monitor the distributions and time-varying fly ash water content throughout the testing are explored. Further, successful use of depth sensing cameras to reconstruct progressive deformations of the material front at various time scales is demonstrated. Combined water content, pore pressure and deformation measurements provides insight into the material behaviour during the run-out, revealing two-time scales at which the deformations occur. However, discrepancies between water contents inferred from the dielectric measurements and electrical conductivities highlights the need for independent verification of the bulk material water content when using the modified probes. Overall, the potential of these innovative instrumentation techniques to complement traditional geotechnical instrumentation is shown.\",\"PeriodicalId\":48816,\"journal\":{\"name\":\"International Journal of Physical Modelling in Geotechnics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Physical Modelling in Geotechnics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1680/jphmg.21.00044\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Physical Modelling in Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1680/jphmg.21.00044","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
Design and Instrumentation of a Novel Centrifuge Container for Fly Ash Run-out Experiments
Debris flow, landslides and material run-outs have significant environmental and economic consequences for numerous industries. High quality experimental data with controlled boundary conditions can help validate and calibrate the predictive capabilities of mechanistic and semi-empirical numerical models. A novel centrifuge container to model dewatering and run-outs induced by a rapid loss of confinement is presented. The design features a pair of vertical doors opened in-flight to simulate failure of the containing structure. Illustrative centrifuge results investigating the run-out characteristics of a fully saturated, densely deposited class-F fly ash are presented. Modified soil moisture probes to monitor the distributions and time-varying fly ash water content throughout the testing are explored. Further, successful use of depth sensing cameras to reconstruct progressive deformations of the material front at various time scales is demonstrated. Combined water content, pore pressure and deformation measurements provides insight into the material behaviour during the run-out, revealing two-time scales at which the deformations occur. However, discrepancies between water contents inferred from the dielectric measurements and electrical conductivities highlights the need for independent verification of the bulk material water content when using the modified probes. Overall, the potential of these innovative instrumentation techniques to complement traditional geotechnical instrumentation is shown.
期刊介绍:
International Journal of Physical Modelling in Geotechnics contains the latest research and analysis in all areas of physical modelling at any scale, including modelling at single gravity and at multiple gravities on a centrifuge, shaking table and pressure chamber testing and geoenvironmental experiments.