高维教育数据的机器学习方法

Haiyan Bai, Xing Liu, F. Bai, Yuting Chen, Randyll Pandohie
{"title":"高维教育数据的机器学习方法","authors":"Haiyan Bai, Xing Liu, F. Bai, Yuting Chen, Randyll Pandohie","doi":"10.2458/jmmss.5396","DOIUrl":null,"url":null,"abstract":"Machine learning has become one of the important methods to process big data. It has made a breakthrough in the limitations of traditional statistical models dealing with high-dimensional data. The current study is to introduce and discuss about how machine learning method can be implemented in high-dimensional education data and help with increasing the model efficacy in dealing with high-dimensional education data. A demonstration of the implementation with an empirical data set is also provided.","PeriodicalId":90602,"journal":{"name":"Journal of methods and measurement in the social sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Method for High-Dimensional Education Data\",\"authors\":\"Haiyan Bai, Xing Liu, F. Bai, Yuting Chen, Randyll Pandohie\",\"doi\":\"10.2458/jmmss.5396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning has become one of the important methods to process big data. It has made a breakthrough in the limitations of traditional statistical models dealing with high-dimensional data. The current study is to introduce and discuss about how machine learning method can be implemented in high-dimensional education data and help with increasing the model efficacy in dealing with high-dimensional education data. A demonstration of the implementation with an empirical data set is also provided.\",\"PeriodicalId\":90602,\"journal\":{\"name\":\"Journal of methods and measurement in the social sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of methods and measurement in the social sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2458/jmmss.5396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of methods and measurement in the social sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2458/jmmss.5396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习已经成为处理大数据的重要方法之一。它突破了传统统计模型处理高维数据的局限性。本研究旨在介绍和讨论如何将机器学习方法应用于高维教育数据中,以帮助提高模型处理高维教育数据的效率。本文还提供了一个经验数据集的实现演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Method for High-Dimensional Education Data
Machine learning has become one of the important methods to process big data. It has made a breakthrough in the limitations of traditional statistical models dealing with high-dimensional data. The current study is to introduce and discuss about how machine learning method can be implemented in high-dimensional education data and help with increasing the model efficacy in dealing with high-dimensional education data. A demonstration of the implementation with an empirical data set is also provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
26 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信