{"title":"一类解析函数的Hankel行列式","authors":"A. Nistor-Serban","doi":"10.31926/but.mif.2019.61.12.2.19","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the bound of the second Hankel determinant H2(2) = a2a4- a23 for the coefficients of a function f belonging to the class W α,β (ϕ) of all normalized analytic functions in the open unit disk U, satisfying the following differential subordination: (1 - α + 2 β) f(z)/z + (α-2 β) f’(z) + βzf’’(z) < ϕ (z).","PeriodicalId":38784,"journal":{"name":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hankel determinant for a certain subclass of analytic functions\",\"authors\":\"A. Nistor-Serban\",\"doi\":\"10.31926/but.mif.2019.61.12.2.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the bound of the second Hankel determinant H2(2) = a2a4- a23 for the coefficients of a function f belonging to the class W α,β (ϕ) of all normalized analytic functions in the open unit disk U, satisfying the following differential subordination: (1 - α + 2 β) f(z)/z + (α-2 β) f’(z) + βzf’’(z) < ϕ (z).\",\"PeriodicalId\":38784,\"journal\":{\"name\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31926/but.mif.2019.61.12.2.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Transilvania University of Brasov, Series III: Mathematics, Informatics, Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31926/but.mif.2019.61.12.2.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Hankel determinant for a certain subclass of analytic functions
In this paper, we investigate the bound of the second Hankel determinant H2(2) = a2a4- a23 for the coefficients of a function f belonging to the class W α,β (ϕ) of all normalized analytic functions in the open unit disk U, satisfying the following differential subordination: (1 - α + 2 β) f(z)/z + (α-2 β) f’(z) + βzf’’(z) < ϕ (z).