{"title":"漂移质量调节系数:稳态分子动力学装置的原位测量","authors":"Yigit Akkus, Akif Turker Gurer, K. Bellur","doi":"10.1080/15567265.2020.1861139","DOIUrl":null,"url":null,"abstract":"ABSTRACT A fundamental understanding of the evaporation/condensation phenomena is vital to many fields of science and engineering, yet there is many discrepancies in the usage of phase-change models and associated coefficients. First, a brief review of the kinetic theory of phase change is provided, and the mass accommodation coefficient (MAC, ) and its inconsistent definitions are discussed. The discussion focuses on the departure from equilibrium; represented as a macroscopic “drift” velocity. Then, a continuous flow, phase change driven molecular-dynamics setup is used to investigate steady-state condensation at a flat liquid-vapor interface of argon at various phase-change rates and temperatures to elucidate the effect of equilibrium departure. MAC is computed directly from the kinetic theory-based Hertz–Knudsen (H-K) and Schrage (exact and approximate) expressions without the need for a priori physical definitions, ad-hoc particle injection/removal, or particle counting. MAC values determined from the approximate and exact Schrage expressions ( and ) are between 0.8 and 0.9, while MAC values from the H-K expression ( ) are above unity for all cases tested. yield value closest to the results from transition state theory [J Chem Phys, 118, 1392–1399 (2003)]. The departure from equilibrium does not affect the value of but causes to vary drastically emphasizing the importance of a drift velocity correction. Additionally, equilibrium departure causes a nonuniform distribution in vapor properties. At the condensing interface, a local rise in vapor temperature and a drop in vapor density is observed when compared with the corresponding bulk values. When the deviation from bulk values are taken into account, all values of MAC including show a small yet noticeable difference that is both temperature and phase-change rate dependent. Graphical abstract","PeriodicalId":49784,"journal":{"name":"Nanoscale and Microscale Thermophysical Engineering","volume":"25 1","pages":"25 - 45"},"PeriodicalIF":2.7000,"publicationDate":"2020-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/15567265.2020.1861139","citationCount":"11","resultStr":"{\"title\":\"Drifting mass accommodation coefficients: in situ measurements from a steady state molecular dynamics setup\",\"authors\":\"Yigit Akkus, Akif Turker Gurer, K. Bellur\",\"doi\":\"10.1080/15567265.2020.1861139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT A fundamental understanding of the evaporation/condensation phenomena is vital to many fields of science and engineering, yet there is many discrepancies in the usage of phase-change models and associated coefficients. First, a brief review of the kinetic theory of phase change is provided, and the mass accommodation coefficient (MAC, ) and its inconsistent definitions are discussed. The discussion focuses on the departure from equilibrium; represented as a macroscopic “drift” velocity. Then, a continuous flow, phase change driven molecular-dynamics setup is used to investigate steady-state condensation at a flat liquid-vapor interface of argon at various phase-change rates and temperatures to elucidate the effect of equilibrium departure. MAC is computed directly from the kinetic theory-based Hertz–Knudsen (H-K) and Schrage (exact and approximate) expressions without the need for a priori physical definitions, ad-hoc particle injection/removal, or particle counting. MAC values determined from the approximate and exact Schrage expressions ( and ) are between 0.8 and 0.9, while MAC values from the H-K expression ( ) are above unity for all cases tested. yield value closest to the results from transition state theory [J Chem Phys, 118, 1392–1399 (2003)]. The departure from equilibrium does not affect the value of but causes to vary drastically emphasizing the importance of a drift velocity correction. Additionally, equilibrium departure causes a nonuniform distribution in vapor properties. At the condensing interface, a local rise in vapor temperature and a drop in vapor density is observed when compared with the corresponding bulk values. When the deviation from bulk values are taken into account, all values of MAC including show a small yet noticeable difference that is both temperature and phase-change rate dependent. Graphical abstract\",\"PeriodicalId\":49784,\"journal\":{\"name\":\"Nanoscale and Microscale Thermophysical Engineering\",\"volume\":\"25 1\",\"pages\":\"25 - 45\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2020-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/15567265.2020.1861139\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale and Microscale Thermophysical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15567265.2020.1861139\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale and Microscale Thermophysical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15567265.2020.1861139","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Drifting mass accommodation coefficients: in situ measurements from a steady state molecular dynamics setup
ABSTRACT A fundamental understanding of the evaporation/condensation phenomena is vital to many fields of science and engineering, yet there is many discrepancies in the usage of phase-change models and associated coefficients. First, a brief review of the kinetic theory of phase change is provided, and the mass accommodation coefficient (MAC, ) and its inconsistent definitions are discussed. The discussion focuses on the departure from equilibrium; represented as a macroscopic “drift” velocity. Then, a continuous flow, phase change driven molecular-dynamics setup is used to investigate steady-state condensation at a flat liquid-vapor interface of argon at various phase-change rates and temperatures to elucidate the effect of equilibrium departure. MAC is computed directly from the kinetic theory-based Hertz–Knudsen (H-K) and Schrage (exact and approximate) expressions without the need for a priori physical definitions, ad-hoc particle injection/removal, or particle counting. MAC values determined from the approximate and exact Schrage expressions ( and ) are between 0.8 and 0.9, while MAC values from the H-K expression ( ) are above unity for all cases tested. yield value closest to the results from transition state theory [J Chem Phys, 118, 1392–1399 (2003)]. The departure from equilibrium does not affect the value of but causes to vary drastically emphasizing the importance of a drift velocity correction. Additionally, equilibrium departure causes a nonuniform distribution in vapor properties. At the condensing interface, a local rise in vapor temperature and a drop in vapor density is observed when compared with the corresponding bulk values. When the deviation from bulk values are taken into account, all values of MAC including show a small yet noticeable difference that is both temperature and phase-change rate dependent. Graphical abstract
期刊介绍:
Nanoscale and Microscale Thermophysical Engineering is a journal covering the basic science and engineering of nanoscale and microscale energy and mass transport, conversion, and storage processes. In addition, the journal addresses the uses of these principles for device and system applications in the fields of energy, environment, information, medicine, and transportation.
The journal publishes both original research articles and reviews of historical accounts, latest progresses, and future directions in this rapidly advancing field. Papers deal with such topics as:
transport and interactions of electrons, phonons, photons, and spins in solids,
interfacial energy transport and phase change processes,
microscale and nanoscale fluid and mass transport and chemical reaction,
molecular-level energy transport, storage, conversion, reaction, and phase transition,
near field thermal radiation and plasmonic effects,
ultrafast and high spatial resolution measurements,
multi length and time scale modeling and computations,
processing of nanostructured materials, including composites,
micro and nanoscale manufacturing,
energy conversion and storage devices and systems,
thermal management devices and systems,
microfluidic and nanofluidic devices and systems,
molecular analysis devices and systems.