{"title":"制备的抗润湿纳米涂层在不同建筑表面的润湿性评价","authors":"Mustafa H. Omar, Wissam A. Hussian, M. A. Ahmed","doi":"10.1515/jmbm-2022-0260","DOIUrl":null,"url":null,"abstract":"Abstract Generally, the major problems of moisture damage are caused by wetting, and particularly in construction, which has led to extensive research for the production of hydrophobic (anti-wetting) coatings. The aim of this research is to prepare an anti-wetting (hydrophobic) nanocomposite coating for different construction surfaces (ceramic, brick and gypsum). Hydrophobic nanocomposite coating was synthesized using electrospinning technique. Polymethyl methacrylate and polystyrene (PS) solutions were prepared in different ratios and then separately reinforced with ZrO2 and ZnO nanoparticles. Contact angle, surface roughness, surface free energy and weathering effects were calculated for all specimens after being coated. All previously selected materials surfaces showed superhydrophobic and hydrophobic properties. The best results were obtained on ceramic surfaces after coating with PS/ZrO2. The water contact angle was 153° while the surface roughness was 0.491 µm and also showed the lowest surface free energy which was 5.5 mJ/m2. Weathering conditions tend to decrease the values of contact angle and this is due to the environmental effect of the weathering but they still have their hydrophobic properties. SEM test was used to determine the surface morphology and nanoparticle size for ceramic surfaces coated with PS and nano-ZrO2.","PeriodicalId":17354,"journal":{"name":"Journal of the Mechanical Behavior of Materials","volume":"31 1","pages":"786 - 792"},"PeriodicalIF":1.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of the wettability of prepared anti-wetting nanocoating on different construction surfaces\",\"authors\":\"Mustafa H. Omar, Wissam A. Hussian, M. A. Ahmed\",\"doi\":\"10.1515/jmbm-2022-0260\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Generally, the major problems of moisture damage are caused by wetting, and particularly in construction, which has led to extensive research for the production of hydrophobic (anti-wetting) coatings. The aim of this research is to prepare an anti-wetting (hydrophobic) nanocomposite coating for different construction surfaces (ceramic, brick and gypsum). Hydrophobic nanocomposite coating was synthesized using electrospinning technique. Polymethyl methacrylate and polystyrene (PS) solutions were prepared in different ratios and then separately reinforced with ZrO2 and ZnO nanoparticles. Contact angle, surface roughness, surface free energy and weathering effects were calculated for all specimens after being coated. All previously selected materials surfaces showed superhydrophobic and hydrophobic properties. The best results were obtained on ceramic surfaces after coating with PS/ZrO2. The water contact angle was 153° while the surface roughness was 0.491 µm and also showed the lowest surface free energy which was 5.5 mJ/m2. Weathering conditions tend to decrease the values of contact angle and this is due to the environmental effect of the weathering but they still have their hydrophobic properties. SEM test was used to determine the surface morphology and nanoparticle size for ceramic surfaces coated with PS and nano-ZrO2.\",\"PeriodicalId\":17354,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Materials\",\"volume\":\"31 1\",\"pages\":\"786 - 792\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmbm-2022-0260\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmbm-2022-0260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluation of the wettability of prepared anti-wetting nanocoating on different construction surfaces
Abstract Generally, the major problems of moisture damage are caused by wetting, and particularly in construction, which has led to extensive research for the production of hydrophobic (anti-wetting) coatings. The aim of this research is to prepare an anti-wetting (hydrophobic) nanocomposite coating for different construction surfaces (ceramic, brick and gypsum). Hydrophobic nanocomposite coating was synthesized using electrospinning technique. Polymethyl methacrylate and polystyrene (PS) solutions were prepared in different ratios and then separately reinforced with ZrO2 and ZnO nanoparticles. Contact angle, surface roughness, surface free energy and weathering effects were calculated for all specimens after being coated. All previously selected materials surfaces showed superhydrophobic and hydrophobic properties. The best results were obtained on ceramic surfaces after coating with PS/ZrO2. The water contact angle was 153° while the surface roughness was 0.491 µm and also showed the lowest surface free energy which was 5.5 mJ/m2. Weathering conditions tend to decrease the values of contact angle and this is due to the environmental effect of the weathering but they still have their hydrophobic properties. SEM test was used to determine the surface morphology and nanoparticle size for ceramic surfaces coated with PS and nano-ZrO2.
期刊介绍:
The journal focuses on the micromechanics and nanomechanics of materials, the relationship between structure and mechanical properties, material instabilities and fracture, as well as size effects and length/time scale transitions. Articles on cutting edge theory, simulations and experiments – used as tools for revealing novel material properties and designing new devices for structural, thermo-chemo-mechanical, and opto-electro-mechanical applications – are encouraged. Synthesis/processing and related traditional mechanics/materials science themes are not within the scope of JMBM. The Editorial Board also organizes topical issues on emerging areas by invitation. Topics Metals and Alloys Ceramics and Glasses Soils and Geomaterials Concrete and Cementitious Materials Polymers and Composites Wood and Paper Elastomers and Biomaterials Liquid Crystals and Suspensions Electromagnetic and Optoelectronic Materials High-energy Density Storage Materials Monument Restoration and Cultural Heritage Preservation Materials Nanomaterials Complex and Emerging Materials.