面向增材制造的体心立方点阵结构多目标参数形状优化

IF 3.3 Q2 ENGINEERING, MANUFACTURING
Hafiz M A Ali, M. Abdi
{"title":"面向增材制造的体心立方点阵结构多目标参数形状优化","authors":"Hafiz M A Ali, M. Abdi","doi":"10.3390/jmmp7050156","DOIUrl":null,"url":null,"abstract":"There has been significant interest in additively manufactured lattice structures in recent years due to their enhanced mechanical and multi-physics properties, making them suitable candidates for various applications. This study presents a multi-parameter implicit equation model for designing body-centred cubic (BCC) lattice structures. The model is used in conjunction with a multi-objective genetic algorithm (MOGA) approach to maximise the stiffness of the BCC lattice structure while minimising von-Mises stress within the structure under a specific loading condition. The selected design from the MOGA at a specific lattice density is compared with the classical BCC lattice structure and the designs generated by a single-objective genetic algorithm, which focuses on maximising stiffness or minimising von-Mises stress alone. By conducting a finite element analysis on the optimised samples and performing mechanical testing on the corresponding 3D-printed specimens, it was observed that the optimised lattice structures exhibited a substantial improvement in mechanical performance compared to the classical BCC model. The suitability of multi-objective and single-objective optimisation approaches for designing lattice structures was further investigated by comparing the corresponding designs in terms of their stiffness and maximum von-Mises stress values. The results from the numerical analysis and experimental testing demonstrate the significance of the application of an appropriate optimisation strategy for designing lattice structures for additive manufacturing.","PeriodicalId":16319,"journal":{"name":"Journal of Manufacturing and Materials Processing","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Objective Parametric Shape Optimisation of Body-Centred Cubic Lattice Structures for Additive Manufacturing\",\"authors\":\"Hafiz M A Ali, M. Abdi\",\"doi\":\"10.3390/jmmp7050156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been significant interest in additively manufactured lattice structures in recent years due to their enhanced mechanical and multi-physics properties, making them suitable candidates for various applications. This study presents a multi-parameter implicit equation model for designing body-centred cubic (BCC) lattice structures. The model is used in conjunction with a multi-objective genetic algorithm (MOGA) approach to maximise the stiffness of the BCC lattice structure while minimising von-Mises stress within the structure under a specific loading condition. The selected design from the MOGA at a specific lattice density is compared with the classical BCC lattice structure and the designs generated by a single-objective genetic algorithm, which focuses on maximising stiffness or minimising von-Mises stress alone. By conducting a finite element analysis on the optimised samples and performing mechanical testing on the corresponding 3D-printed specimens, it was observed that the optimised lattice structures exhibited a substantial improvement in mechanical performance compared to the classical BCC model. The suitability of multi-objective and single-objective optimisation approaches for designing lattice structures was further investigated by comparing the corresponding designs in terms of their stiffness and maximum von-Mises stress values. The results from the numerical analysis and experimental testing demonstrate the significance of the application of an appropriate optimisation strategy for designing lattice structures for additive manufacturing.\",\"PeriodicalId\":16319,\"journal\":{\"name\":\"Journal of Manufacturing and Materials Processing\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Manufacturing and Materials Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jmmp7050156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing and Materials Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jmmp7050156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

近年来,人们对添加制造的晶格结构产生了极大的兴趣,因为它们具有增强的机械和多物理性能,适合各种应用。本研究提出了一个用于设计体心立方(BCC)晶格结构的多参数隐式方程模型。该模型与多目标遗传算法(MOGA)方法结合使用,以最大限度地提高BCC晶格结构的刚度,同时在特定荷载条件下最小化结构内的von Mises应力。将在特定晶格密度下从MOGA中选择的设计与经典BCC晶格结构和单目标遗传算法生成的设计进行比较,该算法专注于单独最大化刚度或最小化von Mises应力。通过对优化的样品进行有限元分析,并对相应的3D打印样品进行机械测试,可以观察到,与经典BCC模型相比,优化的晶格结构在机械性能方面表现出显著的改进。通过比较相应设计的刚度和最大von Mises应力值,进一步研究了多目标和单目标优化方法在网格结构设计中的适用性。数值分析和实验测试的结果证明了应用适当的优化策略设计增材制造晶格结构的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Objective Parametric Shape Optimisation of Body-Centred Cubic Lattice Structures for Additive Manufacturing
There has been significant interest in additively manufactured lattice structures in recent years due to their enhanced mechanical and multi-physics properties, making them suitable candidates for various applications. This study presents a multi-parameter implicit equation model for designing body-centred cubic (BCC) lattice structures. The model is used in conjunction with a multi-objective genetic algorithm (MOGA) approach to maximise the stiffness of the BCC lattice structure while minimising von-Mises stress within the structure under a specific loading condition. The selected design from the MOGA at a specific lattice density is compared with the classical BCC lattice structure and the designs generated by a single-objective genetic algorithm, which focuses on maximising stiffness or minimising von-Mises stress alone. By conducting a finite element analysis on the optimised samples and performing mechanical testing on the corresponding 3D-printed specimens, it was observed that the optimised lattice structures exhibited a substantial improvement in mechanical performance compared to the classical BCC model. The suitability of multi-objective and single-objective optimisation approaches for designing lattice structures was further investigated by comparing the corresponding designs in terms of their stiffness and maximum von-Mises stress values. The results from the numerical analysis and experimental testing demonstrate the significance of the application of an appropriate optimisation strategy for designing lattice structures for additive manufacturing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Manufacturing and Materials Processing
Journal of Manufacturing and Materials Processing Engineering-Industrial and Manufacturing Engineering
CiteScore
5.10
自引率
6.20%
发文量
129
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信