单柱方形平铺表面对马士威奇体量的贡献

IF 1 4区 数学 Q1 MATHEMATICS
Asterisque Pub Date : 2019-03-24 DOI:10.24033/AST.1107
V. Delecroix, É. Goujard, P. Zograf, A. Zorich
{"title":"单柱方形平铺表面对马士威奇体量的贡献","authors":"V. Delecroix, É. Goujard, P. Zograf, A. Zorich","doi":"10.24033/AST.1107","DOIUrl":null,"url":null,"abstract":"We compute explicitly the absolute contribution of square-tiled surfaces having a single horizontal cylinder to the Masur-Veech volume of any ambient stratum of Abelian differentials. The resulting count is particularly simple and efficient in the large genus asymptotics. Using the recent results of Aggarwal and of Chen-Moeller-Zagier on the long-standing conjecture about the large genus asymptotics of Masur-Veech volumes, we derive that the relative contribution is asymptotically of the order 1/d, where d is the dimension of the stratum. Similarly, we evaluate the contribution of one-cylinder square-tiled surfaces to Masur-Veech volumes of low-dimensional strata in the moduli space of quadratic differentials. We combine this count with our recent result on equidistribution of one-cylinder square-tiled surfaces translated to the language of interval exchange transformations to compute empirically approximate values of the Masur-Veech volumes of strata of quadratic differentials of all small dimensions.","PeriodicalId":55445,"journal":{"name":"Asterisque","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2019-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Contribution of one-cylinder square-tiled surfaces to Masur-Veech volumes\",\"authors\":\"V. Delecroix, É. Goujard, P. Zograf, A. Zorich\",\"doi\":\"10.24033/AST.1107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We compute explicitly the absolute contribution of square-tiled surfaces having a single horizontal cylinder to the Masur-Veech volume of any ambient stratum of Abelian differentials. The resulting count is particularly simple and efficient in the large genus asymptotics. Using the recent results of Aggarwal and of Chen-Moeller-Zagier on the long-standing conjecture about the large genus asymptotics of Masur-Veech volumes, we derive that the relative contribution is asymptotically of the order 1/d, where d is the dimension of the stratum. Similarly, we evaluate the contribution of one-cylinder square-tiled surfaces to Masur-Veech volumes of low-dimensional strata in the moduli space of quadratic differentials. We combine this count with our recent result on equidistribution of one-cylinder square-tiled surfaces translated to the language of interval exchange transformations to compute empirically approximate values of the Masur-Veech volumes of strata of quadratic differentials of all small dimensions.\",\"PeriodicalId\":55445,\"journal\":{\"name\":\"Asterisque\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2019-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asterisque\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.24033/AST.1107\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asterisque","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.24033/AST.1107","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 17

摘要

我们明确地计算了具有单个水平圆柱体的正方形瓷砖表面对阿贝尔微分的任何环境地层的Masur-Veech体积的绝对贡献。所得到的计数在大亏格渐近中是特别简单和有效的。利用Aggarwal和Chen Moeller-Zagier关于Masur-Veech体积的大亏格渐近性的长期猜想的最新结果,我们得出相对贡献是1/d阶渐近的,其中d是层的维数。类似地,我们在二次微分的模量空间中评估了一个圆柱体正方形瓷砖表面对低维地层的Masur-Veech体积的贡献。我们将这一计数与我们最近关于一个圆柱体正方形瓷砖表面的等分布的结果相结合,将其转化为区间交换变换的语言,以计算所有小维二次微分的地层的Masur-Veech体积的经验近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contribution of one-cylinder square-tiled surfaces to Masur-Veech volumes
We compute explicitly the absolute contribution of square-tiled surfaces having a single horizontal cylinder to the Masur-Veech volume of any ambient stratum of Abelian differentials. The resulting count is particularly simple and efficient in the large genus asymptotics. Using the recent results of Aggarwal and of Chen-Moeller-Zagier on the long-standing conjecture about the large genus asymptotics of Masur-Veech volumes, we derive that the relative contribution is asymptotically of the order 1/d, where d is the dimension of the stratum. Similarly, we evaluate the contribution of one-cylinder square-tiled surfaces to Masur-Veech volumes of low-dimensional strata in the moduli space of quadratic differentials. We combine this count with our recent result on equidistribution of one-cylinder square-tiled surfaces translated to the language of interval exchange transformations to compute empirically approximate values of the Masur-Veech volumes of strata of quadratic differentials of all small dimensions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Asterisque
Asterisque MATHEMATICS-
CiteScore
2.90
自引率
0.00%
发文量
1
审稿时长
>12 weeks
期刊介绍: The publications part of the site of the French Mathematical Society (Société Mathématique de France - SMF) is bilingual English-French. You may visit the pages below to discover our list of journals and book collections. The institutional web site of the SMF (news, teaching activities, conference announcements...) is essentially written in French.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信