半线性演化方程的可容许解、有界解和周期解

IF 0.9 4区 数学 Q2 MATHEMATICS
Trinh Viet Duoc
{"title":"半线性演化方程的可容许解、有界解和周期解","authors":"Trinh Viet Duoc","doi":"10.1216/jie.2022.34.183","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate semi-linear evolution equations having the following form u(t) = U(t,s)u(s) + ∫ t s U(t,ξ ) f (ξ ,u(ξ ))dξ for t ≥ s and s ∈ R in Banach space X . Under the assumptions that the evolution family (U(t,s))t≥s has the exponential dichotomy and the function f : R×X → X has the Carathéodory property, we show that the semi-linear evolution equations on the line has a unique admissible solution, bounded solution, periodic solution when the function f satisfies the condition φ-Lipschitz and exists a periodic solution when the function f satisfies the condition ‖ f (t,x)‖ ≤ φ(t)(1+‖x‖) for all x ∈ X and almost everywhere t ∈ R.","PeriodicalId":50176,"journal":{"name":"Journal of Integral Equations and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Admissible, bounded and periodic solutions of semilinear evolution equations on the line\",\"authors\":\"Trinh Viet Duoc\",\"doi\":\"10.1216/jie.2022.34.183\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate semi-linear evolution equations having the following form u(t) = U(t,s)u(s) + ∫ t s U(t,ξ ) f (ξ ,u(ξ ))dξ for t ≥ s and s ∈ R in Banach space X . Under the assumptions that the evolution family (U(t,s))t≥s has the exponential dichotomy and the function f : R×X → X has the Carathéodory property, we show that the semi-linear evolution equations on the line has a unique admissible solution, bounded solution, periodic solution when the function f satisfies the condition φ-Lipschitz and exists a periodic solution when the function f satisfies the condition ‖ f (t,x)‖ ≤ φ(t)(1+‖x‖) for all x ∈ X and almost everywhere t ∈ R.\",\"PeriodicalId\":50176,\"journal\":{\"name\":\"Journal of Integral Equations and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Integral Equations and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1216/jie.2022.34.183\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integral Equations and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jie.2022.34.183","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了Banach空间X中t≥s和s∈R的具有以下形式的u(t)=u(t,s)u(s)+ξtsU(t、ξ)f(ξ,u(ξ))dξ的半线性演化方程。在演化族(U(t,s))t≥s具有指数二分法和函数f:R×X的假设下→ X具有Carathéodory性质,我们证明了当函数f满足条件φ-Lipschitz时,在线上的半线性发展方程具有唯一可容许解、有界解、周期解,并且当函数f对所有X∈X和几乎所有t∈R满足条件‖f(t,X)≤φ(t)(1+‖X)时,存在周期解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Admissible, bounded and periodic solutions of semilinear evolution equations on the line
In this paper, we investigate semi-linear evolution equations having the following form u(t) = U(t,s)u(s) + ∫ t s U(t,ξ ) f (ξ ,u(ξ ))dξ for t ≥ s and s ∈ R in Banach space X . Under the assumptions that the evolution family (U(t,s))t≥s has the exponential dichotomy and the function f : R×X → X has the Carathéodory property, we show that the semi-linear evolution equations on the line has a unique admissible solution, bounded solution, periodic solution when the function f satisfies the condition φ-Lipschitz and exists a periodic solution when the function f satisfies the condition ‖ f (t,x)‖ ≤ φ(t)(1+‖x‖) for all x ∈ X and almost everywhere t ∈ R.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Integral Equations and Applications
Journal of Integral Equations and Applications MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.30
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: Journal of Integral Equations and Applications is an international journal devoted to research in the general area of integral equations and their applications. The Journal of Integral Equations and Applications, founded in 1988, endeavors to publish significant research papers and substantial expository/survey papers in theory, numerical analysis, and applications of various areas of integral equations, and to influence and shape developments in this field. The Editors aim at maintaining a balanced coverage between theory and applications, between existence theory and constructive approximation, and between topological/operator-theoretic methods and classical methods in all types of integral equations. The journal is expected to be an excellent source of current information in this area for mathematicians, numerical analysts, engineers, physicists, biologists and other users of integral equations in the applied mathematical sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信