负幂的Alt-Phillips泛函的均匀密度估计和$ \Gamma $收敛性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
D. Silva, O. Savin
{"title":"负幂的Alt-Phillips泛函的均匀密度估计和$ \\Gamma $收敛性","authors":"D. Silva, O. Savin","doi":"10.3934/mine.2023086","DOIUrl":null,"url":null,"abstract":"<abstract><p>We obtain density estimates for the free boundaries of minimizers $ u \\ge 0 $ of the Alt-Phillips functional involving negative power potentials</p>\n\n<p><disp-formula> <label/> <tex-math id=\"FE1\"> \\begin{document}$ \\int_\\Omega \\left(|\\nabla u|^2 + u^{-\\gamma} \\chi_{\\{u>0\\}}\\right) \\, dx, \\quad \\quad \\gamma \\in (0, 2). $\\end{document} </tex-math></disp-formula></p>\n\n<p>These estimates remain uniform as the parameter $ \\gamma \\to 2 $. As a consequence we establish the uniform convergence of the corresponding free boundaries to a minimal surface as $ \\gamma \\to 2 $. The results are based on the $ \\Gamma $-convergence of these energies (properly rescaled) to the Dirichlet-perimeter functional</p>\n\n<p><disp-formula> <label/> <tex-math id=\"FE2\"> \\begin{document}$ \\int_{\\Omega} |\\nabla u|^2 dx + Per_{\\Omega}(\\{ u = 0\\}), $\\end{document} </tex-math></disp-formula></p>\n\n<p>considered by Athanasopoulous, Caffarelli, Kenig, and Salsa.</p></abstract>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Uniform density estimates and $ \\\\Gamma $-convergence for the Alt-Phillips functional of negative powers\",\"authors\":\"D. Silva, O. Savin\",\"doi\":\"10.3934/mine.2023086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<abstract><p>We obtain density estimates for the free boundaries of minimizers $ u \\\\ge 0 $ of the Alt-Phillips functional involving negative power potentials</p>\\n\\n<p><disp-formula> <label/> <tex-math id=\\\"FE1\\\"> \\\\begin{document}$ \\\\int_\\\\Omega \\\\left(|\\\\nabla u|^2 + u^{-\\\\gamma} \\\\chi_{\\\\{u>0\\\\}}\\\\right) \\\\, dx, \\\\quad \\\\quad \\\\gamma \\\\in (0, 2). $\\\\end{document} </tex-math></disp-formula></p>\\n\\n<p>These estimates remain uniform as the parameter $ \\\\gamma \\\\to 2 $. As a consequence we establish the uniform convergence of the corresponding free boundaries to a minimal surface as $ \\\\gamma \\\\to 2 $. The results are based on the $ \\\\Gamma $-convergence of these energies (properly rescaled) to the Dirichlet-perimeter functional</p>\\n\\n<p><disp-formula> <label/> <tex-math id=\\\"FE2\\\"> \\\\begin{document}$ \\\\int_{\\\\Omega} |\\\\nabla u|^2 dx + Per_{\\\\Omega}(\\\\{ u = 0\\\\}), $\\\\end{document} </tex-math></disp-formula></p>\\n\\n<p>considered by Athanasopoulous, Caffarelli, Kenig, and Salsa.</p></abstract>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3934/mine.2023086\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3934/mine.2023086","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

我们得到了涉及负幂势的Alt-Phillips函数的极小子$u\ge0$的自由边界的密度估计\boot{document}$\int_\Omega\left(|\nabla u|^2+u^{-\gamma}\chi_{u>0\}}\right)\,dx,\quad\quad\ gamma\in(0,2)$\end{document}这些估计值与参数$\gamma\to2$保持一致。因此,我们将相应的自由边界到最小曲面的一致收敛性建立为$\gamma\~2$。结果基于这些能量的$\Gamma$收敛性(适当地重新缩放)到Athanasopoulous、Caffarelli、Kenig和Salsa认为的Dirichlet周长泛函\beart{document}$\int_{\Omega}|\nabla u|^2 dx+Per_{\ Omega}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uniform density estimates and $ \Gamma $-convergence for the Alt-Phillips functional of negative powers

We obtain density estimates for the free boundaries of minimizers $ u \ge 0 $ of the Alt-Phillips functional involving negative power potentials

These estimates remain uniform as the parameter $ \gamma \to 2 $. As a consequence we establish the uniform convergence of the corresponding free boundaries to a minimal surface as $ \gamma \to 2 $. The results are based on the $ \Gamma $-convergence of these energies (properly rescaled) to the Dirichlet-perimeter functional

considered by Athanasopoulous, Caffarelli, Kenig, and Salsa.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信