费马和马奎斯特型矩阵微分方程

Pub Date : 2023-06-08 DOI:10.1007/s10476-023-0220-8
Y. X. Li, K. Liu, H. B. Si
{"title":"费马和马奎斯特型矩阵微分方程","authors":"Y. X. Li,&nbsp;K. Liu,&nbsp;H. B. Si","doi":"10.1007/s10476-023-0220-8","DOIUrl":null,"url":null,"abstract":"<div><p>The systems of nonlinear differential equations of certain types can be simplified to matrix forms. Two types of matrix differential equations will be considered in the paper, one is Fermat type matrix differential equation </p><div><div><span>$$A{(z)^n} + A'{(z)^n} = E$$</span></div></div><p> where <i>n</i> = 2 and <i>n</i> = 3, another is Malmquist type matrix differential equation </p><div><div><span>$$A'(z) = \\alpha A{(z)^2} + \\beta A(z) + \\gamma E,$$</span></div></div><p>, where <i>α</i> (≠ 0), <i>β, γ</i> are constants. By solving the systems of nonlinear differential equations, we obtain some properties on the meromorphic matrix solutions of the above matrix differential equations. In addition, we also consider two types of nonlinear differential equations, one of them is called Bi-Fermat differential equation.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fermat and Malmquist type matrix differential equations\",\"authors\":\"Y. X. Li,&nbsp;K. Liu,&nbsp;H. B. Si\",\"doi\":\"10.1007/s10476-023-0220-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The systems of nonlinear differential equations of certain types can be simplified to matrix forms. Two types of matrix differential equations will be considered in the paper, one is Fermat type matrix differential equation </p><div><div><span>$$A{(z)^n} + A'{(z)^n} = E$$</span></div></div><p> where <i>n</i> = 2 and <i>n</i> = 3, another is Malmquist type matrix differential equation </p><div><div><span>$$A'(z) = \\\\alpha A{(z)^2} + \\\\beta A(z) + \\\\gamma E,$$</span></div></div><p>, where <i>α</i> (≠ 0), <i>β, γ</i> are constants. By solving the systems of nonlinear differential equations, we obtain some properties on the meromorphic matrix solutions of the above matrix differential equations. In addition, we also consider two types of nonlinear differential equations, one of them is called Bi-Fermat differential equation.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2023-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10476-023-0220-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0220-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

某些类型的非线性微分方程组可以简化为矩阵形式。本文将考虑两种类型的矩阵微分方程,一种是Fermat型矩阵微分方程$$A{(z)^n}+A'{。通过求解非线性微分方程组,我们得到了上述矩阵微分方程亚纯矩阵解的一些性质。此外,我们还考虑了两类非线性微分方程,其中一类叫做Bi-Fermat微分方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Fermat and Malmquist type matrix differential equations

The systems of nonlinear differential equations of certain types can be simplified to matrix forms. Two types of matrix differential equations will be considered in the paper, one is Fermat type matrix differential equation

$$A{(z)^n} + A'{(z)^n} = E$$

where n = 2 and n = 3, another is Malmquist type matrix differential equation

$$A'(z) = \alpha A{(z)^2} + \beta A(z) + \gamma E,$$

, where α (≠ 0), β, γ are constants. By solving the systems of nonlinear differential equations, we obtain some properties on the meromorphic matrix solutions of the above matrix differential equations. In addition, we also consider two types of nonlinear differential equations, one of them is called Bi-Fermat differential equation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信