{"title":"OrientalifoldKhovanov–Lauda–Rouquier代数和Enomoto–Kashiwara代数的表示","authors":"T. Przeździecki","doi":"10.2140/pjm.2023.322.407","DOIUrl":null,"url":null,"abstract":"We consider an\"orientifold\"generalization of Khovanov-Lauda-Rouquier algebras, depending on a quiver with an involution and a framing. Their representation theory is related, via a Schur-Weyl duality type functor, to Kac-Moody quantum symmetric pairs, and, via a categorification theorem, to highest weight modules over an algebra introduced by Enomoto and Kashiwara. Our first main result is a new shuffle realization of these highest weight modules and a combinatorial construction of their PBW and canonical bases in terms of Lyndon words. Our second main result is a classification of irreducible representations of orientifold KLR algebras and a computation of their global dimension in the case when the framing is trivial.","PeriodicalId":54651,"journal":{"name":"Pacific Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Representations of orientifold\\nKhovanov–Lauda–Rouquier algebras and the Enomoto–Kashiwara algebra\",\"authors\":\"T. Przeździecki\",\"doi\":\"10.2140/pjm.2023.322.407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider an\\\"orientifold\\\"generalization of Khovanov-Lauda-Rouquier algebras, depending on a quiver with an involution and a framing. Their representation theory is related, via a Schur-Weyl duality type functor, to Kac-Moody quantum symmetric pairs, and, via a categorification theorem, to highest weight modules over an algebra introduced by Enomoto and Kashiwara. Our first main result is a new shuffle realization of these highest weight modules and a combinatorial construction of their PBW and canonical bases in terms of Lyndon words. Our second main result is a classification of irreducible representations of orientifold KLR algebras and a computation of their global dimension in the case when the framing is trivial.\",\"PeriodicalId\":54651,\"journal\":{\"name\":\"Pacific Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pacific Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.2140/pjm.2023.322.407\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pacific Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/pjm.2023.322.407","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Representations of orientifold
Khovanov–Lauda–Rouquier algebras and the Enomoto–Kashiwara algebra
We consider an"orientifold"generalization of Khovanov-Lauda-Rouquier algebras, depending on a quiver with an involution and a framing. Their representation theory is related, via a Schur-Weyl duality type functor, to Kac-Moody quantum symmetric pairs, and, via a categorification theorem, to highest weight modules over an algebra introduced by Enomoto and Kashiwara. Our first main result is a new shuffle realization of these highest weight modules and a combinatorial construction of their PBW and canonical bases in terms of Lyndon words. Our second main result is a classification of irreducible representations of orientifold KLR algebras and a computation of their global dimension in the case when the framing is trivial.
期刊介绍:
Founded in 1951, PJM has published mathematics research for more than 60 years. PJM is run by mathematicians from the Pacific Rim. PJM aims to publish high-quality articles in all branches of mathematics, at low cost to libraries and individuals. The Pacific Journal of Mathematics is incorporated as a 501(c)(3) California nonprofit.