基于RSM和MD的单晶硅超高精密单点金刚石加工表面精度预测模型

Q3 Engineering
Lukman N. Abdulkadir, K. Abou-El-Hossein, Abubakar I. Jumare, M. Liman, Odedeyi Peter Babatunde
{"title":"基于RSM和MD的单晶硅超高精密单点金刚石加工表面精度预测模型","authors":"Lukman N. Abdulkadir, K. Abou-El-Hossein, Abubakar I. Jumare, M. Liman, Odedeyi Peter Babatunde","doi":"10.1504/ijcmsse.2020.10032001","DOIUrl":null,"url":null,"abstract":"Silicon has enjoyed extensive usage in electronic devices, solar cells and infrared (IR) optics because of its high transmittance at 1.2 to 6.0 μm wavelength range. High quality optical silicon components (Ra less than 8 nm) requires appropriate choice of ductile regime machining cutting conditions that can improve surface roughness and facilitate accurate prediction. To achieve this, three factors, i.e., feed rate, rake angle and nose radius were varied while keeping cutting speed, depth of cut and clearance angle constant. An MD study of the experiment was also carried out for comparison. The result obtained showed that; BBD standard runs 5, 6, 8, 9, and 10 with Ra values between 1.8 and 7 nm are of high form accuracy and satisfied the basic requirement of Ra over the entire IR region for silicon. The MD study was also observed to conform with the Ra result as obtained in the experiment.","PeriodicalId":39426,"journal":{"name":"International Journal of Computational Materials Science and Surface Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive model for surface accuracy in ultra-high precision single point diamond machining of monocrystalline silicon using RSM and MD\",\"authors\":\"Lukman N. Abdulkadir, K. Abou-El-Hossein, Abubakar I. Jumare, M. Liman, Odedeyi Peter Babatunde\",\"doi\":\"10.1504/ijcmsse.2020.10032001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silicon has enjoyed extensive usage in electronic devices, solar cells and infrared (IR) optics because of its high transmittance at 1.2 to 6.0 μm wavelength range. High quality optical silicon components (Ra less than 8 nm) requires appropriate choice of ductile regime machining cutting conditions that can improve surface roughness and facilitate accurate prediction. To achieve this, three factors, i.e., feed rate, rake angle and nose radius were varied while keeping cutting speed, depth of cut and clearance angle constant. An MD study of the experiment was also carried out for comparison. The result obtained showed that; BBD standard runs 5, 6, 8, 9, and 10 with Ra values between 1.8 and 7 nm are of high form accuracy and satisfied the basic requirement of Ra over the entire IR region for silicon. The MD study was also observed to conform with the Ra result as obtained in the experiment.\",\"PeriodicalId\":39426,\"journal\":{\"name\":\"International Journal of Computational Materials Science and Surface Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computational Materials Science and Surface Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcmsse.2020.10032001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Materials Science and Surface Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcmsse.2020.10032001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

硅在1.2 ~ 6.0 μm波长范围内具有很高的透光率,因此在电子器件、太阳能电池和红外(IR)光学中有着广泛的应用。高质量的光学硅元件(Ra小于8 nm)需要适当选择韧性状态的加工切削条件,以提高表面粗糙度并便于准确预测。为此,在保持切削速度、切削深度和间隙角不变的情况下,改变进给量、前倾角和机头半径三个因素。为了进行比较,还对该实验进行了MD研究。结果表明:BBD标准运行5,6,8,9和10,Ra值在1.8和7 nm之间,具有很高的形状精度,满足了硅在整个IR区域的Ra的基本要求。MD研究也与实验中得到的Ra结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predictive model for surface accuracy in ultra-high precision single point diamond machining of monocrystalline silicon using RSM and MD
Silicon has enjoyed extensive usage in electronic devices, solar cells and infrared (IR) optics because of its high transmittance at 1.2 to 6.0 μm wavelength range. High quality optical silicon components (Ra less than 8 nm) requires appropriate choice of ductile regime machining cutting conditions that can improve surface roughness and facilitate accurate prediction. To achieve this, three factors, i.e., feed rate, rake angle and nose radius were varied while keeping cutting speed, depth of cut and clearance angle constant. An MD study of the experiment was also carried out for comparison. The result obtained showed that; BBD standard runs 5, 6, 8, 9, and 10 with Ra values between 1.8 and 7 nm are of high form accuracy and satisfied the basic requirement of Ra over the entire IR region for silicon. The MD study was also observed to conform with the Ra result as obtained in the experiment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
3
期刊介绍: IJCMSSE is a refereed international journal that aims to provide a blend of theoretical and applied study of computational materials science and surface engineering. The scope of IJCMSSE original scientific papers that describe computer methods of modelling, simulation, and prediction for designing materials and structures at all length scales. The Editors-in-Chief of IJCMSSE encourage the submission of fundamental and interdisciplinary contributions on materials science and engineering, surface engineering and computational methods of modelling, simulation, and prediction. Papers published in IJCMSSE involve the solution of current problems, in which it is necessary to apply computational materials science and surface engineering methods for solving relevant engineering problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信