主动学习引导下金属卤化物钙钛矿结晶的尺寸控制

Zhi Li, Philip W. Nega, M. Najeeb, Chaochao Dun, M. Zeller, J. Urban, W. Saidi, Joshua Schrier, A. Norquist, E. Chan
{"title":"主动学习引导下金属卤化物钙钛矿结晶的尺寸控制","authors":"Zhi Li, Philip W. Nega, M. Najeeb, Chaochao Dun, M. Zeller, J. Urban, W. Saidi, Joshua Schrier, A. Norquist, E. Chan","doi":"10.33774/chemrxiv-2021-w2c7b","DOIUrl":null,"url":null,"abstract":"Metal halide perovskite (MHP) derivatives, a promising class of optoelectronic materials, have been synthesized with a range of dimensionalities that govern their optoelectronic properties and determine their applications. We demonstrate a data-driven approach combining active learning and high-throughput experimentation to discover, control, and understand the formation of phases with different dimensionalities in the morpholinium (morph) lead iodide system. Using a robot-assisted workflow, we synthesized and characterized two novel MHP derivatives that have distinct optical properties: a one-dimensional (1D) morphPbI3 phase ([C4H10NO][PbI3]) and a 2D (morph)2PbI4 phase ([C4H10NO]2[PbI4]). To efficiently acquire the data needed to construct a machine learning (ML) model of the reaction conditions where the 1D and 2D phases are formed, data acquisition was guided by a diverse-mini-batch-sampling active learning algorithm, using prediction confidence as a stopping criterion. Querying the ML model uncovered the reaction parameters that have the most significant effects on dimensionality control. Based on these insights, we propose a reaction scheme that rationalizes the formation of different dimensional MHP derivatives in the morph-Pb-I system. The data-driven approach presented here, including the use of additives to manipulate dimensionality, will be valuable for controlling the crystallization of a range of materials over large reaction-composition spaces.","PeriodicalId":72565,"journal":{"name":"ChemRxiv : the preprint server for chemistry","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Dimensional control over metal halide perovskite crystallization guided by active learning\",\"authors\":\"Zhi Li, Philip W. Nega, M. Najeeb, Chaochao Dun, M. Zeller, J. Urban, W. Saidi, Joshua Schrier, A. Norquist, E. Chan\",\"doi\":\"10.33774/chemrxiv-2021-w2c7b\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal halide perovskite (MHP) derivatives, a promising class of optoelectronic materials, have been synthesized with a range of dimensionalities that govern their optoelectronic properties and determine their applications. We demonstrate a data-driven approach combining active learning and high-throughput experimentation to discover, control, and understand the formation of phases with different dimensionalities in the morpholinium (morph) lead iodide system. Using a robot-assisted workflow, we synthesized and characterized two novel MHP derivatives that have distinct optical properties: a one-dimensional (1D) morphPbI3 phase ([C4H10NO][PbI3]) and a 2D (morph)2PbI4 phase ([C4H10NO]2[PbI4]). To efficiently acquire the data needed to construct a machine learning (ML) model of the reaction conditions where the 1D and 2D phases are formed, data acquisition was guided by a diverse-mini-batch-sampling active learning algorithm, using prediction confidence as a stopping criterion. Querying the ML model uncovered the reaction parameters that have the most significant effects on dimensionality control. Based on these insights, we propose a reaction scheme that rationalizes the formation of different dimensional MHP derivatives in the morph-Pb-I system. The data-driven approach presented here, including the use of additives to manipulate dimensionality, will be valuable for controlling the crystallization of a range of materials over large reaction-composition spaces.\",\"PeriodicalId\":72565,\"journal\":{\"name\":\"ChemRxiv : the preprint server for chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemRxiv : the preprint server for chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33774/chemrxiv-2021-w2c7b\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemRxiv : the preprint server for chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33774/chemrxiv-2021-w2c7b","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

金属卤化物钙钛矿(MHP)衍生物是一类很有前途的光电材料,已经合成了一系列的尺寸,这些尺寸决定了它们的光电性能并决定了它们的应用。我们展示了一种数据驱动的方法,结合主动学习和高通量实验来发现、控制和理解形态化(morph)碘化铅体系中不同维度相的形成。利用机器人辅助工作流程,我们合成并表征了两种具有不同光学性质的新型MHP衍生物:一维(1D) morphPbI3相([C4H10NO][PbI3])和二维(morph)2PbI4相([C4H10NO]2[PbI4])。为了有效地获取构建1D和2D相形成的反应条件的机器学习(ML)模型所需的数据,数据采集由多元小批量采样主动学习算法指导,以预测置信度作为停止准则。查询ML模型揭示了对维数控制有最显著影响的反应参数。基于这些见解,我们提出了一个反应方案,使morphi - pb - i体系中不同维度MHP衍生物的形成合理化。这里提出的数据驱动的方法,包括使用添加剂来操纵维度,对于在大的反应组成空间中控制一系列材料的结晶将是有价值的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dimensional control over metal halide perovskite crystallization guided by active learning
Metal halide perovskite (MHP) derivatives, a promising class of optoelectronic materials, have been synthesized with a range of dimensionalities that govern their optoelectronic properties and determine their applications. We demonstrate a data-driven approach combining active learning and high-throughput experimentation to discover, control, and understand the formation of phases with different dimensionalities in the morpholinium (morph) lead iodide system. Using a robot-assisted workflow, we synthesized and characterized two novel MHP derivatives that have distinct optical properties: a one-dimensional (1D) morphPbI3 phase ([C4H10NO][PbI3]) and a 2D (morph)2PbI4 phase ([C4H10NO]2[PbI4]). To efficiently acquire the data needed to construct a machine learning (ML) model of the reaction conditions where the 1D and 2D phases are formed, data acquisition was guided by a diverse-mini-batch-sampling active learning algorithm, using prediction confidence as a stopping criterion. Querying the ML model uncovered the reaction parameters that have the most significant effects on dimensionality control. Based on these insights, we propose a reaction scheme that rationalizes the formation of different dimensional MHP derivatives in the morph-Pb-I system. The data-driven approach presented here, including the use of additives to manipulate dimensionality, will be valuable for controlling the crystallization of a range of materials over large reaction-composition spaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信