世界机器人大赛BCI控制机器人比赛中监督运动图像任务的解决方案

Huixing Gou, Yi Piao, Jiecheng Ren, Qian Zhao, Yijun Chen, Chang Liu, Wei Hong, Xiaochu Zhang
{"title":"世界机器人大赛BCI控制机器人比赛中监督运动图像任务的解决方案","authors":"Huixing Gou, Yi Piao, Jiecheng Ren, Qian Zhao, Yijun Chen, Chang Liu, Wei Hong, Xiaochu Zhang","doi":"10.26599/BSA.2022.9050014","DOIUrl":null,"url":null,"abstract":"Background: One of the most prestigious competitions in the world is the World Robot Conference. This paper presents the winning solution to the supervised motor imagery (MI) task in the BCI Controlled Robot Contest in World Robot Contest 2021. Methods: Data augmentation, preprocessing, feature extraction, and model training are the main components of the solution. The model is based on EEGNet, a popular convolutional neural networks model for classifying electroencephalography data. Results: Despite the model’s lack of stability, this solution was the most successful in the task. The channels closest to the vertex were the most helpful in feature extraction. Conclusion: This solution is suitable for supervised MI tasks not only in this competition but also in future scenarios.","PeriodicalId":67062,"journal":{"name":"Brain Science Advances","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A solution to supervised motor imagery task in the BCI Controlled Robot Contest in World Robot Contest\",\"authors\":\"Huixing Gou, Yi Piao, Jiecheng Ren, Qian Zhao, Yijun Chen, Chang Liu, Wei Hong, Xiaochu Zhang\",\"doi\":\"10.26599/BSA.2022.9050014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: One of the most prestigious competitions in the world is the World Robot Conference. This paper presents the winning solution to the supervised motor imagery (MI) task in the BCI Controlled Robot Contest in World Robot Contest 2021. Methods: Data augmentation, preprocessing, feature extraction, and model training are the main components of the solution. The model is based on EEGNet, a popular convolutional neural networks model for classifying electroencephalography data. Results: Despite the model’s lack of stability, this solution was the most successful in the task. The channels closest to the vertex were the most helpful in feature extraction. Conclusion: This solution is suitable for supervised MI tasks not only in this competition but also in future scenarios.\",\"PeriodicalId\":67062,\"journal\":{\"name\":\"Brain Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain Science Advances\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.26599/BSA.2022.9050014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Science Advances","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.26599/BSA.2022.9050014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

背景:世界机器人大会是世界上最负盛名的比赛之一。本文介绍了2021年世界机器人大赛脑机接口控制机器人竞赛中监督运动图像(MI)任务的获胜解决方案。方法:数据扩充、预处理、特征提取和模型训练是解决方案的主要组成部分。该模型基于EEGNet,这是一种流行的用于对脑电图数据进行分类的卷积神经网络模型。结果:尽管模型缺乏稳定性,但该解决方案在任务中是最成功的。最靠近顶点的通道在特征提取中最有帮助。结论:该解决方案不仅适用于本次比赛中的监督MI任务,也适用于未来的场景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A solution to supervised motor imagery task in the BCI Controlled Robot Contest in World Robot Contest
Background: One of the most prestigious competitions in the world is the World Robot Conference. This paper presents the winning solution to the supervised motor imagery (MI) task in the BCI Controlled Robot Contest in World Robot Contest 2021. Methods: Data augmentation, preprocessing, feature extraction, and model training are the main components of the solution. The model is based on EEGNet, a popular convolutional neural networks model for classifying electroencephalography data. Results: Despite the model’s lack of stability, this solution was the most successful in the task. The channels closest to the vertex were the most helpful in feature extraction. Conclusion: This solution is suitable for supervised MI tasks not only in this competition but also in future scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
27
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信