{"title":"皮托管探针模型动态结冰过程的实验研究","authors":"Haiyang Hu, Faisal Al-Masri, L. Tian, Hui Hu","doi":"10.2514/1.t6782","DOIUrl":null,"url":null,"abstract":"An experimental study was conducted to characterize the dynamic ice accretion process over the surface of a typical aeronautic Pitot probe model under different icing conditions. The experimental study was conducted in the Icing Research Tunnel available at Iowa State University. While a high-speed imaging system was used to record the dynamic ice accretion process, a three-dimensional (3D) scanning system was also used to measure the 3D shapes of the ice layers accreted on the test model. While opaque and grainy ice structures were found to accrete mainly along the wedge-shaped lip of the front port and over the front surface of the probe holder under a dry rime icing condition, much more complicated ice structures with transparent and glazy appearance were observed to cover almost entire surface of the Pitot probe under a wet glaze icing condition. While a flower-like ice structure was found to grow rapidly along the front port lip, multiple irregular-shaped ice structures accreted over the probe holder under a mixed icing condition. The characteristics of the icing process under different icing conditions were compared in terms of 3D shapes of the ice structures, the profiles of the accreted ice layers, the ice blockage to the front port, and the total ice mass on the Pitot probe model. The acquired ice accretion images were correlated with the 3D ice shape measurements to elucidate the underlying icing physics.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study of Dynamic Icing Process on a Pitot Probe Model\",\"authors\":\"Haiyang Hu, Faisal Al-Masri, L. Tian, Hui Hu\",\"doi\":\"10.2514/1.t6782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An experimental study was conducted to characterize the dynamic ice accretion process over the surface of a typical aeronautic Pitot probe model under different icing conditions. The experimental study was conducted in the Icing Research Tunnel available at Iowa State University. While a high-speed imaging system was used to record the dynamic ice accretion process, a three-dimensional (3D) scanning system was also used to measure the 3D shapes of the ice layers accreted on the test model. While opaque and grainy ice structures were found to accrete mainly along the wedge-shaped lip of the front port and over the front surface of the probe holder under a dry rime icing condition, much more complicated ice structures with transparent and glazy appearance were observed to cover almost entire surface of the Pitot probe under a wet glaze icing condition. While a flower-like ice structure was found to grow rapidly along the front port lip, multiple irregular-shaped ice structures accreted over the probe holder under a mixed icing condition. The characteristics of the icing process under different icing conditions were compared in terms of 3D shapes of the ice structures, the profiles of the accreted ice layers, the ice blockage to the front port, and the total ice mass on the Pitot probe model. The acquired ice accretion images were correlated with the 3D ice shape measurements to elucidate the underlying icing physics.\",\"PeriodicalId\":17482,\"journal\":{\"name\":\"Journal of Thermophysics and Heat Transfer\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermophysics and Heat Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.t6782\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6782","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental Study of Dynamic Icing Process on a Pitot Probe Model
An experimental study was conducted to characterize the dynamic ice accretion process over the surface of a typical aeronautic Pitot probe model under different icing conditions. The experimental study was conducted in the Icing Research Tunnel available at Iowa State University. While a high-speed imaging system was used to record the dynamic ice accretion process, a three-dimensional (3D) scanning system was also used to measure the 3D shapes of the ice layers accreted on the test model. While opaque and grainy ice structures were found to accrete mainly along the wedge-shaped lip of the front port and over the front surface of the probe holder under a dry rime icing condition, much more complicated ice structures with transparent and glazy appearance were observed to cover almost entire surface of the Pitot probe under a wet glaze icing condition. While a flower-like ice structure was found to grow rapidly along the front port lip, multiple irregular-shaped ice structures accreted over the probe holder under a mixed icing condition. The characteristics of the icing process under different icing conditions were compared in terms of 3D shapes of the ice structures, the profiles of the accreted ice layers, the ice blockage to the front port, and the total ice mass on the Pitot probe model. The acquired ice accretion images were correlated with the 3D ice shape measurements to elucidate the underlying icing physics.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.