{"title":"18CrNiMo7-6钢渗碳淬火过程应力场模拟及试验验证","authors":"S. Qin, H. Ma, Lianxiang Wang","doi":"10.5755/j02.ms.30932","DOIUrl":null,"url":null,"abstract":"The carburizing and quenching process of 18CrNiMo7-6 steel was performed through simulation methods and experiments. The study was carried out to accurately predict the residual stress distribution of carburized samples after the quenching process. The stress and retained-austenite amount were measured via X-ray diffraction. Similarly, the carbon content was determined using a carbon sulfur analyzer, respectively. A detailed model with the coupling of thermal, metallic, and mechanical fields was built to predict the evolution of the stress field during the quenching process. The carburized “thoroughly” specimens at different carbon potentials were used to obtain the required mechanical property parameters and dilatometric parameters for FEM simulation. According to the results, the martensite transformation kinetic parameters α value of 18CrNiMo7-6 alloy steel should be 0.0202. With the increase of carbon content, the changing trend of the transformation plasticity coefficient K appeared as a 'tick' shape. A compressive residual stress field was generated at the carburized layer surface after the quenching process, and the maximum value of 340 MPa occurred at ~ 0.9 mm below the surface. The carbon profile and residual stress fields predicted from the FEM simulation corresponded closely to the experimentally determined results.","PeriodicalId":18298,"journal":{"name":"Materials Science-medziagotyra","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Stress Field Simulation and its Experimental Verification of Carburizing-Quenching Process Performed on 18CrNiMo7-6 Steel\",\"authors\":\"S. Qin, H. Ma, Lianxiang Wang\",\"doi\":\"10.5755/j02.ms.30932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The carburizing and quenching process of 18CrNiMo7-6 steel was performed through simulation methods and experiments. The study was carried out to accurately predict the residual stress distribution of carburized samples after the quenching process. The stress and retained-austenite amount were measured via X-ray diffraction. Similarly, the carbon content was determined using a carbon sulfur analyzer, respectively. A detailed model with the coupling of thermal, metallic, and mechanical fields was built to predict the evolution of the stress field during the quenching process. The carburized “thoroughly” specimens at different carbon potentials were used to obtain the required mechanical property parameters and dilatometric parameters for FEM simulation. According to the results, the martensite transformation kinetic parameters α value of 18CrNiMo7-6 alloy steel should be 0.0202. With the increase of carbon content, the changing trend of the transformation plasticity coefficient K appeared as a 'tick' shape. A compressive residual stress field was generated at the carburized layer surface after the quenching process, and the maximum value of 340 MPa occurred at ~ 0.9 mm below the surface. The carbon profile and residual stress fields predicted from the FEM simulation corresponded closely to the experimentally determined results.\",\"PeriodicalId\":18298,\"journal\":{\"name\":\"Materials Science-medziagotyra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science-medziagotyra\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.5755/j02.ms.30932\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science-medziagotyra","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.5755/j02.ms.30932","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Stress Field Simulation and its Experimental Verification of Carburizing-Quenching Process Performed on 18CrNiMo7-6 Steel
The carburizing and quenching process of 18CrNiMo7-6 steel was performed through simulation methods and experiments. The study was carried out to accurately predict the residual stress distribution of carburized samples after the quenching process. The stress and retained-austenite amount were measured via X-ray diffraction. Similarly, the carbon content was determined using a carbon sulfur analyzer, respectively. A detailed model with the coupling of thermal, metallic, and mechanical fields was built to predict the evolution of the stress field during the quenching process. The carburized “thoroughly” specimens at different carbon potentials were used to obtain the required mechanical property parameters and dilatometric parameters for FEM simulation. According to the results, the martensite transformation kinetic parameters α value of 18CrNiMo7-6 alloy steel should be 0.0202. With the increase of carbon content, the changing trend of the transformation plasticity coefficient K appeared as a 'tick' shape. A compressive residual stress field was generated at the carburized layer surface after the quenching process, and the maximum value of 340 MPa occurred at ~ 0.9 mm below the surface. The carbon profile and residual stress fields predicted from the FEM simulation corresponded closely to the experimentally determined results.
期刊介绍:
It covers the fields of materials science concerning with the traditional engineering materials as well as advanced materials and technologies aiming at the implementation and industry applications. The variety of materials under consideration, contributes to the cooperation of scientists working in applied physics, chemistry, materials science and different fields of engineering.