Cosserat微极性弹性:经典Eringen与位错形式

IF 0.9 4区 材料科学 Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
I. Ghiba, G. Rizzi, A. Madeo, P. Neff
{"title":"Cosserat微极性弹性:经典Eringen与位错形式","authors":"I. Ghiba, G. Rizzi, A. Madeo, P. Neff","doi":"10.2140/jomms.2023.18.93","DOIUrl":null,"url":null,"abstract":"In this paper we do a comparative presentation of the linear isotropic Cosserat elastic model from two perspectives: the classical Mindlin-Eringen-Nowacki description in terms of a microrotation vector and a new formulation in terms of a skew-symmetric matrix and a curvature energy in dislocation form. We provide the reader with an alternative representation of the energy for the isotropic Cosserat model to ease the comparison with the relaxed micromorphic model and the geometrically nonlinear Cosserat elastic model.","PeriodicalId":50134,"journal":{"name":"Journal of Mechanics of Materials and Structures","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Cosserat micropolar elasticity: classical Eringen vs. dislocation form\",\"authors\":\"I. Ghiba, G. Rizzi, A. Madeo, P. Neff\",\"doi\":\"10.2140/jomms.2023.18.93\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we do a comparative presentation of the linear isotropic Cosserat elastic model from two perspectives: the classical Mindlin-Eringen-Nowacki description in terms of a microrotation vector and a new formulation in terms of a skew-symmetric matrix and a curvature energy in dislocation form. We provide the reader with an alternative representation of the energy for the isotropic Cosserat model to ease the comparison with the relaxed micromorphic model and the geometrically nonlinear Cosserat elastic model.\",\"PeriodicalId\":50134,\"journal\":{\"name\":\"Journal of Mechanics of Materials and Structures\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanics of Materials and Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2140/jomms.2023.18.93\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics of Materials and Structures","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2140/jomms.2023.18.93","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 8

摘要

在本文中,我们从两个角度对线性各向同性Cosserat弹性模型进行了比较介绍:用微旋转矢量的经典Mindlin-Eringen-Nowacki描述和用斜对称矩阵和位错形式的曲率能的新公式。我们为读者提供了各向同性Cosserat模型的能量的替代表示,以便于与松弛微形态模型和几何非线性Cosserat弹性模型进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cosserat micropolar elasticity: classical Eringen vs. dislocation form
In this paper we do a comparative presentation of the linear isotropic Cosserat elastic model from two perspectives: the classical Mindlin-Eringen-Nowacki description in terms of a microrotation vector and a new formulation in terms of a skew-symmetric matrix and a curvature energy in dislocation form. We provide the reader with an alternative representation of the energy for the isotropic Cosserat model to ease the comparison with the relaxed micromorphic model and the geometrically nonlinear Cosserat elastic model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mechanics of Materials and Structures
Journal of Mechanics of Materials and Structures 工程技术-材料科学:综合
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
3.5 months
期刊介绍: Drawing from all areas of engineering, materials, and biology, the mechanics of solids, materials, and structures is experiencing considerable growth in directions not anticipated a few years ago, which involve the development of new technology requiring multidisciplinary simulation. The journal stimulates this growth by emphasizing fundamental advances that are relevant in dealing with problems of all length scales. Of growing interest are the multiscale problems with an interaction between small and large scale phenomena.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信