低维纳米复合材料力学性能和功能性能计算的回顾与展望

Q3 Engineering
X. Xia, Yang Liu, Jacqueline J. Li, G. Weng
{"title":"低维纳米复合材料力学性能和功能性能计算的回顾与展望","authors":"X. Xia, Yang Liu, Jacqueline J. Li, G. Weng","doi":"10.1142/s2424913021420030","DOIUrl":null,"url":null,"abstract":"Over the past decade, we have witnessed a stream of research activities on the mechanical and functional properties of graphene- and carbon nanotube-based nanocomposites. In this paper, we outline some of the efforts the present authors have participated along the way. Closely related contributions from the other authors are also introduced. The focus here is on the development of homogenization models for the effective properties of these low-dimensional nanocomposites. A key issue involved is the interface effects which are responsible for many extraordinary properties of the nanocomposites. To pave the way for the presentation of various homogenization models, we first give a general introduction to various categories of interface effects for both mechanical and functional properties. Then, the mechanical properties, involving the complex viscoelastic characteristics and coupled elastoplastic-damage processes, and the functional properties, involving electrical conductivity, dielectric permittivity, thermal conductivity, electromagnetic interference shielding and energy storage, are presented. We conclude with some perspectives on topics that deserve closer investigation in the near future.","PeriodicalId":36070,"journal":{"name":"Journal of Micromechanics and Molecular Physics","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Review and perspective on the calculations of mechanical and functional properties of low-dimensional nanocomposites\",\"authors\":\"X. Xia, Yang Liu, Jacqueline J. Li, G. Weng\",\"doi\":\"10.1142/s2424913021420030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Over the past decade, we have witnessed a stream of research activities on the mechanical and functional properties of graphene- and carbon nanotube-based nanocomposites. In this paper, we outline some of the efforts the present authors have participated along the way. Closely related contributions from the other authors are also introduced. The focus here is on the development of homogenization models for the effective properties of these low-dimensional nanocomposites. A key issue involved is the interface effects which are responsible for many extraordinary properties of the nanocomposites. To pave the way for the presentation of various homogenization models, we first give a general introduction to various categories of interface effects for both mechanical and functional properties. Then, the mechanical properties, involving the complex viscoelastic characteristics and coupled elastoplastic-damage processes, and the functional properties, involving electrical conductivity, dielectric permittivity, thermal conductivity, electromagnetic interference shielding and energy storage, are presented. We conclude with some perspectives on topics that deserve closer investigation in the near future.\",\"PeriodicalId\":36070,\"journal\":{\"name\":\"Journal of Micromechanics and Molecular Physics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromechanics and Molecular Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s2424913021420030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromechanics and Molecular Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2424913021420030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

摘要

在过去的十年中,我们见证了一系列关于石墨烯和碳纳米管基纳米复合材料的力学和功能特性的研究活动。在本文中,我们概述了当前作者在此过程中所做的一些努力。本文还介绍了其他作者密切相关的贡献。本文的重点是为这些低维纳米复合材料的有效性能建立均匀化模型。所涉及的一个关键问题是界面效应,它负责许多非凡的性能的纳米复合材料。为了为各种均质化模型的呈现铺平道路,我们首先对力学和功能特性的各种类别的界面效应进行了一般介绍。然后,介绍了复合材料的力学性能,包括复合粘弹性特性和弹塑性损伤耦合过程,以及功能性能,包括电导率、介电常数、导热系数、电磁干扰屏蔽和储能。我们总结了一些值得在不久的将来进行更深入研究的主题的观点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Review and perspective on the calculations of mechanical and functional properties of low-dimensional nanocomposites
Over the past decade, we have witnessed a stream of research activities on the mechanical and functional properties of graphene- and carbon nanotube-based nanocomposites. In this paper, we outline some of the efforts the present authors have participated along the way. Closely related contributions from the other authors are also introduced. The focus here is on the development of homogenization models for the effective properties of these low-dimensional nanocomposites. A key issue involved is the interface effects which are responsible for many extraordinary properties of the nanocomposites. To pave the way for the presentation of various homogenization models, we first give a general introduction to various categories of interface effects for both mechanical and functional properties. Then, the mechanical properties, involving the complex viscoelastic characteristics and coupled elastoplastic-damage processes, and the functional properties, involving electrical conductivity, dielectric permittivity, thermal conductivity, electromagnetic interference shielding and energy storage, are presented. We conclude with some perspectives on topics that deserve closer investigation in the near future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Micromechanics and Molecular Physics
Journal of Micromechanics and Molecular Physics Materials Science-Polymers and Plastics
CiteScore
3.30
自引率
0.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信