半空间中的毛细Schwarz对称

IF 2.1 2区 数学 Q1 MATHEMATICS
Zheng Lu, C. Xia, Xuwen Zhang
{"title":"半空间中的毛细Schwarz对称","authors":"Zheng Lu, C. Xia, Xuwen Zhang","doi":"10.1515/ans-2022-0078","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we introduce a notion of capillary Schwarz symmetrization in the half-space. It can be viewed as the counterpart of the classical Schwarz symmetrization in the framework of capillary problem in the half-space. A key ingredient is a special anisotropic gauge, which enables us to transform the capillary symmetrization to the convex symmetrization introduced in Alvino et al. https:/doi.org/10.1016/S0294-1449(97)80147-3.","PeriodicalId":7191,"journal":{"name":"Advanced Nonlinear Studies","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Capillary Schwarz symmetrization in the half-space\",\"authors\":\"Zheng Lu, C. Xia, Xuwen Zhang\",\"doi\":\"10.1515/ans-2022-0078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we introduce a notion of capillary Schwarz symmetrization in the half-space. It can be viewed as the counterpart of the classical Schwarz symmetrization in the framework of capillary problem in the half-space. A key ingredient is a special anisotropic gauge, which enables us to transform the capillary symmetrization to the convex symmetrization introduced in Alvino et al. https:/doi.org/10.1016/S0294-1449(97)80147-3.\",\"PeriodicalId\":7191,\"journal\":{\"name\":\"Advanced Nonlinear Studies\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nonlinear Studies\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ans-2022-0078\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nonlinear Studies","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ans-2022-0078","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

本文引入了半空间中毛细Schwarz对称的概念。它可以看作是半空间中毛细问题框架下的经典Schwarz对称的对应。一个关键因素是一个特殊的各向异性规范,它使我们能够将毛细管对称转换为Alvino等人引入的凸对称https:/doi.org/10.1016/S0294-1449(97)80147-3。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capillary Schwarz symmetrization in the half-space
Abstract In this article, we introduce a notion of capillary Schwarz symmetrization in the half-space. It can be viewed as the counterpart of the classical Schwarz symmetrization in the framework of capillary problem in the half-space. A key ingredient is a special anisotropic gauge, which enables us to transform the capillary symmetrization to the convex symmetrization introduced in Alvino et al. https:/doi.org/10.1016/S0294-1449(97)80147-3.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.00
自引率
5.60%
发文量
22
审稿时长
12 months
期刊介绍: Advanced Nonlinear Studies is aimed at publishing papers on nonlinear problems, particulalry those involving Differential Equations, Dynamical Systems, and related areas. It will also publish novel and interesting applications of these areas to problems in engineering and the sciences. Papers submitted to this journal must contain original, timely, and significant results. Articles will generally, but not always, be published in the order when the final copies were received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信