{"title":"比较应用于SENTINEL-2和LANDSAT-8图像的分类方法,以区分阿根廷恩特雷里奥斯的森林人林。","authors":"E. Avogadro, Joan Cristian Padró Garcia","doi":"10.21138/gf.652","DOIUrl":null,"url":null,"abstract":"En Argentina las plantaciones alcanzan 1.2 millones de hectareas. Se plantea si la clasificacion automatica (CA) de imagenes de los sensores MSI (MultiSpectral Imager) de Sentinel-2 (S2) y OLI (Operational Land Imager) de Landsat-8 (L8) puede ser precisa y fiable para identificar plantaciones. Se analizo que combinacion de CA y sensor es mas preciso, y cuales son las caracteristicas de S2 y L8 que dan lugar a diferencias. El area de estudio fue el departamento de Concordia (Entre Rios, Argentina). Se compararon tres metodos de CA: supervisado parametrico (minima distancia euclidiana), supervisado no parametrico (kNN) y no supervisado (IsoData Hibrido). El kNN, con Acierto Global de 91.4% para S2, es el mas preciso. En conclusion, la CA es precisa y fiable para ser complementaria a la fotointerpretacion. La resolucion espectral y espacial de MSI no aporta una mejora relevante en la CA.","PeriodicalId":53900,"journal":{"name":"Geofocus-Revista Internacional de Ciencia y TecnologIa de la InformaciOn GeogrAfica","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2019-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"COMPARACIÓN DE MÉTODOS DE CLASIFICACIÓN APLICADOS A IMÁGENES SENTINEL-2 Y LANDSAT-8, PARA LA DIFERENCIACIÓN DE PLANTACIONES FORESTALES EN ENTRE RÍOS, ARGENTINA.\",\"authors\":\"E. Avogadro, Joan Cristian Padró Garcia\",\"doi\":\"10.21138/gf.652\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"En Argentina las plantaciones alcanzan 1.2 millones de hectareas. Se plantea si la clasificacion automatica (CA) de imagenes de los sensores MSI (MultiSpectral Imager) de Sentinel-2 (S2) y OLI (Operational Land Imager) de Landsat-8 (L8) puede ser precisa y fiable para identificar plantaciones. Se analizo que combinacion de CA y sensor es mas preciso, y cuales son las caracteristicas de S2 y L8 que dan lugar a diferencias. El area de estudio fue el departamento de Concordia (Entre Rios, Argentina). Se compararon tres metodos de CA: supervisado parametrico (minima distancia euclidiana), supervisado no parametrico (kNN) y no supervisado (IsoData Hibrido). El kNN, con Acierto Global de 91.4% para S2, es el mas preciso. En conclusion, la CA es precisa y fiable para ser complementaria a la fotointerpretacion. La resolucion espectral y espacial de MSI no aporta una mejora relevante en la CA.\",\"PeriodicalId\":53900,\"journal\":{\"name\":\"Geofocus-Revista Internacional de Ciencia y TecnologIa de la InformaciOn GeogrAfica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geofocus-Revista Internacional de Ciencia y TecnologIa de la InformaciOn GeogrAfica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21138/gf.652\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofocus-Revista Internacional de Ciencia y TecnologIa de la InformaciOn GeogrAfica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21138/gf.652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
COMPARACIÓN DE MÉTODOS DE CLASIFICACIÓN APLICADOS A IMÁGENES SENTINEL-2 Y LANDSAT-8, PARA LA DIFERENCIACIÓN DE PLANTACIONES FORESTALES EN ENTRE RÍOS, ARGENTINA.
En Argentina las plantaciones alcanzan 1.2 millones de hectareas. Se plantea si la clasificacion automatica (CA) de imagenes de los sensores MSI (MultiSpectral Imager) de Sentinel-2 (S2) y OLI (Operational Land Imager) de Landsat-8 (L8) puede ser precisa y fiable para identificar plantaciones. Se analizo que combinacion de CA y sensor es mas preciso, y cuales son las caracteristicas de S2 y L8 que dan lugar a diferencias. El area de estudio fue el departamento de Concordia (Entre Rios, Argentina). Se compararon tres metodos de CA: supervisado parametrico (minima distancia euclidiana), supervisado no parametrico (kNN) y no supervisado (IsoData Hibrido). El kNN, con Acierto Global de 91.4% para S2, es el mas preciso. En conclusion, la CA es precisa y fiable para ser complementaria a la fotointerpretacion. La resolucion espectral y espacial de MSI no aporta una mejora relevante en la CA.