Jumaeri Jumaeri, Akhsanun Nadiyya, A. Prasetya, W. Sumarni
{"title":"氢氧化镁对海水卤水中刚果红染料的吸附研究","authors":"Jumaeri Jumaeri, Akhsanun Nadiyya, A. Prasetya, W. Sumarni","doi":"10.14710/jksa.25.6.205-211","DOIUrl":null,"url":null,"abstract":"The study of Mg(OH)2 from seawater bittern as an adsorbent for Congo red (CR) from an aqueous solution has been performed. This study aimed to determine the effect of pH, contact time, and initial CR concentration on CR adsorption by Mg(OH)2. The adsorption kinetics and isotherms of CR on Mg(OH)2 in an aqueous solution were also studied. The optimum adsorption was obtained at pH 8 within 90 minutes of contact time with an adsorption capacity of 46.3 mg/g for an initial CR concentration of 29 mg/L. The adsorption process followed the Freundlich isotherm model with an n value of 2.579 and the pseudo-second-order kinetic model with a k2 value of 0.0021 g mg−1min−1.","PeriodicalId":17811,"journal":{"name":"Jurnal Kimia Sains dan Aplikasi","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Congo Red Dye Adsorption using Magnesium Hydroxide from Seawater Bittern\",\"authors\":\"Jumaeri Jumaeri, Akhsanun Nadiyya, A. Prasetya, W. Sumarni\",\"doi\":\"10.14710/jksa.25.6.205-211\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of Mg(OH)2 from seawater bittern as an adsorbent for Congo red (CR) from an aqueous solution has been performed. This study aimed to determine the effect of pH, contact time, and initial CR concentration on CR adsorption by Mg(OH)2. The adsorption kinetics and isotherms of CR on Mg(OH)2 in an aqueous solution were also studied. The optimum adsorption was obtained at pH 8 within 90 minutes of contact time with an adsorption capacity of 46.3 mg/g for an initial CR concentration of 29 mg/L. The adsorption process followed the Freundlich isotherm model with an n value of 2.579 and the pseudo-second-order kinetic model with a k2 value of 0.0021 g mg−1min−1.\",\"PeriodicalId\":17811,\"journal\":{\"name\":\"Jurnal Kimia Sains dan Aplikasi\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Kimia Sains dan Aplikasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jksa.25.6.205-211\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Kimia Sains dan Aplikasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jksa.25.6.205-211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
研究了海水卤水中Mg(OH)2作为刚果红(CR)的吸附剂。本研究旨在确定pH、接触时间和初始CR浓度对Mg(OH)2吸附CR的影响。研究了CR在水溶液中对Mg(OH)2的吸附动力学和等温线。当初始CR浓度为29 mg/L时,在pH为8的条件下,吸附时间为90 min,吸附量为46.3 mg/g。吸附过程符合Freundlich等温模型(n值为2.579)和拟二级动力学模型(k2值为0.0021 g mg−1min−1)。
Congo Red Dye Adsorption using Magnesium Hydroxide from Seawater Bittern
The study of Mg(OH)2 from seawater bittern as an adsorbent for Congo red (CR) from an aqueous solution has been performed. This study aimed to determine the effect of pH, contact time, and initial CR concentration on CR adsorption by Mg(OH)2. The adsorption kinetics and isotherms of CR on Mg(OH)2 in an aqueous solution were also studied. The optimum adsorption was obtained at pH 8 within 90 minutes of contact time with an adsorption capacity of 46.3 mg/g for an initial CR concentration of 29 mg/L. The adsorption process followed the Freundlich isotherm model with an n value of 2.579 and the pseudo-second-order kinetic model with a k2 value of 0.0021 g mg−1min−1.