{"title":"19.1 - 25.5 ghz紧凑型双模旋转行波振荡器,195.4 dbc /Hz FoM","authors":"Hongkun Li, Yiyang Shu, Changting Pi, Xun Luo","doi":"10.1109/LMWC.2022.3183446","DOIUrl":null,"url":null,"abstract":"In this letter, a dual-mode rotary traveling-wave oscillator (RTWO) is proposed to achieve wide operation bandwidth and multiple phases. Two twisted differential transmission lines are coupled together to form the dual-mode traveling-wave resonator. Sixteen pairs of back-to-back inverters and capacitors are connected to the resonators to introduce the multicore multi-phase operation. The mode switches are used to control the coupling direction and select the desired mode without degrading the quality factor. Verified in a 40-nm CMOS process, the proposed dual-mode RTWO exhibits a dual-mode frequency range from 19.1 to 25.5 GHz with the core size of 0.08 mm $^{\\textbf {2}}$ . The measured 10-MHz phase noise at 25.30 and 22.12 GHz is −129.6 and −131.5 dBc/Hz, respectively. The best FoM and FoMT are 186.2 and 195.4 dBc/Hz, respectively.","PeriodicalId":13130,"journal":{"name":"IEEE Microwave and Wireless Components Letters","volume":"32 1","pages":"1347-1350"},"PeriodicalIF":2.9000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A 19.1–25.5-GHz Compact Dual-Mode Rotary Traveling-Wave Oscillator With 195.4-dBc/Hz FoM\",\"authors\":\"Hongkun Li, Yiyang Shu, Changting Pi, Xun Luo\",\"doi\":\"10.1109/LMWC.2022.3183446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this letter, a dual-mode rotary traveling-wave oscillator (RTWO) is proposed to achieve wide operation bandwidth and multiple phases. Two twisted differential transmission lines are coupled together to form the dual-mode traveling-wave resonator. Sixteen pairs of back-to-back inverters and capacitors are connected to the resonators to introduce the multicore multi-phase operation. The mode switches are used to control the coupling direction and select the desired mode without degrading the quality factor. Verified in a 40-nm CMOS process, the proposed dual-mode RTWO exhibits a dual-mode frequency range from 19.1 to 25.5 GHz with the core size of 0.08 mm $^{\\\\textbf {2}}$ . The measured 10-MHz phase noise at 25.30 and 22.12 GHz is −129.6 and −131.5 dBc/Hz, respectively. The best FoM and FoMT are 186.2 and 195.4 dBc/Hz, respectively.\",\"PeriodicalId\":13130,\"journal\":{\"name\":\"IEEE Microwave and Wireless Components Letters\",\"volume\":\"32 1\",\"pages\":\"1347-1350\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2022-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Microwave and Wireless Components Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1109/LMWC.2022.3183446\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Microwave and Wireless Components Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LMWC.2022.3183446","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A 19.1–25.5-GHz Compact Dual-Mode Rotary Traveling-Wave Oscillator With 195.4-dBc/Hz FoM
In this letter, a dual-mode rotary traveling-wave oscillator (RTWO) is proposed to achieve wide operation bandwidth and multiple phases. Two twisted differential transmission lines are coupled together to form the dual-mode traveling-wave resonator. Sixteen pairs of back-to-back inverters and capacitors are connected to the resonators to introduce the multicore multi-phase operation. The mode switches are used to control the coupling direction and select the desired mode without degrading the quality factor. Verified in a 40-nm CMOS process, the proposed dual-mode RTWO exhibits a dual-mode frequency range from 19.1 to 25.5 GHz with the core size of 0.08 mm $^{\textbf {2}}$ . The measured 10-MHz phase noise at 25.30 and 22.12 GHz is −129.6 and −131.5 dBc/Hz, respectively. The best FoM and FoMT are 186.2 and 195.4 dBc/Hz, respectively.
期刊介绍:
The IEEE Microwave and Wireless Components Letters (MWCL) publishes four-page papers (3 pages of text + up to 1 page of references) that focus on microwave theory, techniques and applications as they relate to components, devices, circuits, biological effects, and systems involving the generation, modulation, demodulation, control, transmission, and detection of microwave signals. This includes scientific, technical, medical and industrial activities. Microwave theory and techniques relates to electromagnetic waves in the frequency range of a few MHz and a THz; other spectral regions and wave types are included within the scope of the MWCL whenever basic microwave theory and techniques can yield useful results. Generally, this occurs in the theory of wave propagation in structures with dimensions comparable to a wavelength, and in the related techniques for analysis and design.